ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance Raman mapping as an interface phonon probe in Si-SiO2 nanocomposites

138   0   0.0 ( 0 )
 نشر من قبل Ekta Rani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermediate frequency range (511 - 514 cm-1) Si phonons in Si-SiO2 nanocomposites are shown to have contribution from both core1 and surface/interface1 Si phonons, where, ratio of contribution of the two depends on the size of a Si nanocrystal. Further, laser heating experiment shows that contribution of the core phonon increases due to increase in size of a nanocrystal. Wavelength dependent Raman mapping reveals that interface phonons are observable due to Resonance Raman scattering. This can well be corroborated with the absorption spectra. This understanding can be gainfully used to manipulate and characterize Si-SiO2 nanocomposite, simultaneously for photovoltaic device applications.

قيم البحث

اقرأ أيضاً

Si-SiO2 multilayer nanocomposite (NCp) films, grown using pulsed laser deposition with varying Si deposition time are investigated using Raman spectroscopy/mapping for studying the variation of Si phonon frequency observed in these NCps. The lower fr equency (LF) phonons (~ 495 - 510 cm-1) and higher frequency (HF) phonons (~ 515 - 519 cm-1) observed in Raman mapping data (Fig. 1A) in all samples studied are attributed to have originated from surface (Si-SiO2 interface) and core of Si nanocrystals, respectively. The consistent picture of this understanding is developed using Raman spectroscopy monitored laser heating/annealing and cooling (LHC) experiment at the site of a desired frequency chosen with the help of Raman mapping, which brings out clear difference between core and surface (interface) phonons of Si nanocrystals. In order to further support our attribution of LF being surface (interface) phonons, Raman spectra calculations for Si41 cluster with oxygen termination are performed which shows strong Si phonon frequency at 512 cm-1 corresponding to the surface Si atoms. This can be considered analogous to the observed phonon frequencies in the range 495 - 510 cm-1 originating at the Si-SiO2 interface (extended). These results along with XPS data show that nature of interface (oxygen bonding) in turn depends on the size of nanocrystals and thus LF phonons originate at the surface of smaller Si nanocrystals. The understanding developed can be extended to explain large variation observed in Si phonon frequencies of Si-SiO2 nanocomposites reported in the literature, especially lower frequencies.
We report the observation of an intense anomalous peak at 1608 cm$^{-1}$ in the Raman spectrum of graphene associated to the presence of chromium nanoparticles in contact with graphene. Bombardment with an electron beam demonstrates that this peak is distinct from the well studied D$$ peak appearing as defects are created in graphene; the new peak is found non dispersive. We argue that the bonding of chromium atoms with carbon atoms softens the out-of-plane optical (ZO) phonon mode, in such a way that the frequency of its overtone decreases to $2omega_{rm ZO}simomega_{rm G}$, where $omega_{rm G}$=1585~cm$^{-1}$ is the frequency of the Raman-active E$_{rm 2g}$ mode. Thus, the observed new peak is attributed to the 2ZO mode which becomes Raman-active following a mechanism known as Fermi resonance. First-principles calculations on vibrational and anharmonic properties of the graphene/Cr interface support this scenario.
Phonon-phonon anharmonic effects have a strong influence on the phonon spectrum; most prominent manifestation of these effects are the softening (shift in frequency) and broadening (change in FWHM) of the phonon modes at finite temperature. Using Ram an spectroscopy, we studied the temperature dependence of the FWHM and Raman shift of $mathrm{E_{2g}^1}$ and $mathrm{A_{1g}}$ modes for single-layer and natural bilayer MoS$_2$ over a broad range of temperatures ($8 < $T$ < 300$ K). Both the Raman shift and FWHM of these modes show linear temperature dependence for $T>100$ K, whereas they become independent of temperature for $T<100$ K. Using first-principles calculations, we show that three-phonon anharmonic effects intrinsic to the material can account for the observed temperature-dependence of the line-width of both the modes. It also plays an important role in determining the temperature-dependence of the frequency of the Raman modes. The observed evolution of the line-width of the A$_{1g}$ mode suggests that electron-phonon processes are additionally involved. From the analysis of the temperature-dependent Raman spectra of MoS$_2$ on two different substrates -- SiO$_2$ and hexagonal boron nitride, we disentangle the contributions of external stress and internal impurities to these phonon-related processes. We find that the renormalization of the phonon mode frequencies on different substrates is governed by strain and intrinsic doping. Our work establishes the role of intrinsic phonon anharmonic effects in deciding the Raman shift in MoS$_2$ irrespective of substrate and layer number.
The broadband and ultrafast photoresponse of graphene has been extensively studied in recent years, although the photoexcited carrier dynamics is still far from being completely understood. Different experimental approaches imply either one of two fu ndamentally different scattering mechanisms for hot electrons. One is high-energy optical phonons, while the other is disorder-driven supercollisions with acoustic phonons. However, the concurrent relaxation via both optical and acoustic phonons has not been considered so far, hindering the interpretation of different experiments within a unified framework. Here we expand the optical phonon-mediated cooling model, to include electron scattering with the acoustic phonons. By assuming the enhancement of electron-acoustic phonon supercollisions from the localized defect at the photothermoelectric current-generating interface, we provide a broader perspective to the ultrafast photoresponse of graphene, highlighting the previously overlooked effect of the interface for cooling dynamics. We show that the transient photothermoelectric response, which has been attributed exclusively to supercollisions, can be successfully explained without rejecting the established optical phonon relaxation pathway, demonstrating that the two cooling mechanisms are not mutually exclusive but complement each other.
The spin-phonon interaction is the dominant process for spin relaxation in Si, and as thermal transport in Si is dominated by phonons, one would expect spin polarization to influence Sis thermal conductivity. Here we report the experimental evidence of just such a coupling. We have performed concurrent measurements of spin, charge, and phonon transport in p-doped Si across a wide range of temperatures. In an experimental system of a freestanding two um p-Si beam coated on one side with a thin (25 nm) ferromagnetic spin injection layer, we use the self-heating 3 omega method to measure changes in electrical and thermal conductivity under the influence of a magnetic field. These magneto-thermal transport measurements reveal signatures in the variation of electrical and thermal transport that are consistent with spin-phonon interaction. Raman spectroscopy measurements and first principles calculations support that these variations are due to spin-phonon interaction. Spin polarization leads to softening of phonon modes, a reduction in the group velocity of acoustic modes, and a subsequent decrease in thermal conductivity at room temperature. Moreover, magneto-thermal transport measurements as a function of temperature indicate a change in the spin-phonon relaxation behavior at low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا