ﻻ يوجد ملخص باللغة العربية
We study collective electronic excitations in graphene in the integer quantum Hall regime, concentrating mainly on excitations with spin reversal such as spin-flip and spin-wave excitations. We show that these excitations are correctly accounted for in the time-dependent Hartree-Fock and strong magnetic field approximations, in contrast to spin-conserving (magneto-exciton) modes which involve a strong Landau-level mixing at non-zero wave vectors. The collective excitations are discussed in view of prominent theorems, such as Kohns and Larmors. Whereas the latter remains valid in graphene and yields insight into the understanding of spin-dependent modes, Kohns theorem does not apply to relativistic electrons in graphene. We finally calculate the exchange correction to the chemical potential in the weak magnetic field limit.
We consider graphene in a strong perpendicular magnetic field at zero temperature with an integral number of filled Landau levels and study the dispersion of single particle-hole excitations. We first analyze the two-body problem of a single Dirac el
We have investigated temperature dependence of the longitudinal conductivity $sigma_{xx}$ at integer filling factors $ u =i$ for Si/SiGe heterostructure in the quantum Hall effect regime. It is shown that for odd $i$, when the Fermi level $E_{F}$ is
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
Fractional quantum Hall states at half-integer filling factors have been observed in many systems beyond the $5/2$ and $7/2$ plateaus in GaAs quantum wells. This includes bilayer states in GaAs, several half-integer plateaus in ZnO-based heterostruct
We study the discrete energy spectrum of curved graphene sheets in the presence of a magnetic field. The shifting of the Landau levels is determined for complex and realistic geometries of curved graphene sheets. The energy levels follow a similar sq