ترغب بنشر مسار تعليمي؟ اضغط هنا

RKKY Interactions in Graphene Landau Levels

92   0   0.0 ( 0 )
 نشر من قبل Herbert A. Fertig
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RKKY interactions are enhanced by the lowest Landau level, which is shown to form electron states binding with the spin impurities and add a strong non-perturbative contribution to pairwise impurity spin interactions when their separation $R$ no more than the magnetic length. Beyond this interactions are found to fall off as $1/R^3$ due to perturbative effects of the negative energy Landau levels. Based on these results, we develop simple mean-field theories for both systems, taking into account the fact that typically the density of states in the lowest Landau level is much smaller than the density of spin impurities. For the strain field case, we find that the system is formally ferrimagnetic, but with very small net moment due to the relatively low density of impurities binding electrons. The transition temperature is nevertheless enhanced by them. For real fields, the system forms a canted antiferromagnet if the field is not so strong as to pin the impurity spins along the field. The possibility that the system in this latter case supports a Kosterlitz-Thouless transition is discussed.



قيم البحث

اقرأ أيضاً

Energy spectroscopy of strongly interacting phases requires probes which minimize screening while retaining spectral resolution and local sensitivity. Here we demonstrate that such probes can be realized using atomic sized quantum dots bound to defec ts in hexagonal Boron Nitride tunnel barriers, placed at nanometric distance from graphene. With dot energies capacitively tuned by a planar graphite electrode, dot-assisted tunneling becomes highly sensitive to the graphene excitation spectrum. The spectra track the onset of degeneracy lifting with magnetic field at the ground state, and at unoccupied exited states, revealing symmetry-broken gaps which develop steeply with magnetic field - corresponding to Lande $g$ factors as high as 160. Measured up to $B = 33$ T, spectra exhibit a primary energy split between spin-polarized excited states, and a secondary spin-dependent valley-split. Our results show that defect dots probe the spectra while minimizing local screening, and are thus exceptionally sensitive to interacting states.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o rdinary superconductor. To this end, we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor exposed to a magnetic field, and find that the interplay of superconductivity and Landau level physics yields a rich phase diagram of states as a function of $mu/t$ and $Delta/t$, where $mu$, $t$ and $Delta$ are the chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also accommodates regions of topological superconductivity. Most importantly, we find that application of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of $h/e$ fluxoids greatly facilitates regions of topological superconductivity in the limit of $Delta/trightarrow 0$. In contrast, a uniform magnetic field, a hexagonal Abrikosov lattice of $h/2e$ fluxoids, or a one dimensional lattice of stripes produces topological superconductivity only for sufficiently large $Delta/t$.
The emergence of flat electronic bands and of the recently discovered strongly correlated and superconducting phases in twisted bilayer graphene crucially depends on the interlayer twist angle upon approaching the magic angle $theta_M approx 1.1deg$. Although advanced fabrication methods allow alignment of graphene layers with global twist angle control of about 0.1$deg$, little information is currently available on the distribution of the local twist angles in actual magic angle twisted bilayer graphene (MATBG) transport devices. Here we map the local $theta$ variations in hBN encapsulated devices with relative precision better than 0.002$deg$ and spatial resolution of a few moir$e$ periods. Utilizing a scanning nanoSQUID-on-tip, we attain tomographic imaging of the Landau levels in the quantum Hall state in MATBG, which provides a highly sensitive probe of the charge disorder and of the local band structure determined by the local $theta$. We find that even state-of-the-art devices, exhibiting high-quality global MATBG features including superconductivity, display significant variations in the local $theta$ with a span close to 0.1$deg$. Devices may even have substantial areas where no local MATBG behavior is detected, yet still display global MATBG characteristics in transport, highlighting the importance of percolation physics. The derived $theta$ maps reveal substantial gradients and a network of jumps. We show that the twist angle gradients generate large unscreened electric fields that drastically change the quantum Hall state by forming edge states in the bulk of the sample, and may also significantly affect the phase diagram of correlated and superconducting states. The findings call for exploration of band structure engineering utilizing twist-angle gradients and gate-tunable built-in planar electric fields for novel correlated phenomena and applications.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
We study the Landau levels in curved graphene sheets by measuring the discrete energy spectrum in the presence of a magnetic field. We observe that in rippled graphene sheets, the Landau energy levels satisfy the same square root dependence on the en ergy quantum number as in flat sheets, $E_n sim sqrt{n}$. Though, we find that the Landau levels in curved sheets are shifted towards lower energies by an amount proportional to the average spatial deformation of the sheet. Our findings are relevant for the quantum Hall effect in curved graphene sheets, which is directly related to Landau quantization. For the purpose of this study, we develop a new numerical method, based on the quantum lattice Boltzmann method, to solve the Dirac equation on curved manifolds, describing the low-energetic states in strained graphene sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا