ﻻ يوجد ملخص باللغة العربية
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RKKY interactions are enhanced by the lowest Landau level, which is shown to form electron states binding with the spin impurities and add a strong non-perturbative contribution to pairwise impurity spin interactions when their separation $R$ no more than the magnetic length. Beyond this interactions are found to fall off as $1/R^3$ due to perturbative effects of the negative energy Landau levels. Based on these results, we develop simple mean-field theories for both systems, taking into account the fact that typically the density of states in the lowest Landau level is much smaller than the density of spin impurities. For the strain field case, we find that the system is formally ferrimagnetic, but with very small net moment due to the relatively low density of impurities binding electrons. The transition temperature is nevertheless enhanced by them. For real fields, the system forms a canted antiferromagnet if the field is not so strong as to pin the impurity spins along the field. The possibility that the system in this latter case supports a Kosterlitz-Thouless transition is discussed.
Energy spectroscopy of strongly interacting phases requires probes which minimize screening while retaining spectral resolution and local sensitivity. Here we demonstrate that such probes can be realized using atomic sized quantum dots bound to defec
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o
The emergence of flat electronic bands and of the recently discovered strongly correlated and superconducting phases in twisted bilayer graphene crucially depends on the interlayer twist angle upon approaching the magic angle $theta_M approx 1.1deg$.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the
We study the Landau levels in curved graphene sheets by measuring the discrete energy spectrum in the presence of a magnetic field. We observe that in rippled graphene sheets, the Landau energy levels satisfy the same square root dependence on the en