ﻻ يوجد ملخص باللغة العربية
We consider graphene in a strong perpendicular magnetic field at zero temperature with an integral number of filled Landau levels and study the dispersion of single particle-hole excitations. We first analyze the two-body problem of a single Dirac electron and hole in a magnetic field interacting via Coulomb forces. We then turn to the many-body problem, where particle-hole symmetry and the existence of two valleys lead to a number of effects peculiar to graphene. We find that the coupling together of a large number of low-lying excitations leads to strong many-body corrections, which could be observed in inelastic light scattering or optical absorption. We also discuss in detail how the appearance of different branches in the exciton dispersion is sensitive to the number of filled spin and valley sublevels.
It is well established that the ground states of a two-dimensional electron gas with half-filled high ($N ge 2$) Landau levels are compressible charge-ordered states, known as quantum Hall stripe (QHS) phases. The generic features of QHSs are a maxim
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
Phonon excitations of fractional quantum Hall states at filling factors nu = 1/3, 2/5, 4/7, 3/5, 4/3, and 5/3 are experimentally shown to be based on Landau level transitions of Composite Fermions. At filling factor nu = 2/3, however, a linear field
We study the Landau levels in curved graphene sheets by measuring the discrete energy spectrum in the presence of a magnetic field. We observe that in rippled graphene sheets, the Landau energy levels satisfy the same square root dependence on the en
We study the discrete energy spectrum of curved graphene sheets in the presence of a magnetic field. The shifting of the Landau levels is determined for complex and realistic geometries of curved graphene sheets. The energy levels follow a similar sq