ﻻ يوجد ملخص باللغة العربية
The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%.
Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs t
We study the storage and retrieval of images in a hot atomic vapor using the gradient echo memory protocol. We demonstrate that this technique allows for the storage of multiple spatial modes. We study both spatial and temporal multiplexing by storin
We show that portions of an image written into a gradient echo memory can be individually retrieved or erased on demand, an important step towards processing a spatially multiplexed quantum signal. Targeted retrieval is achieved by locally addressing
We experimentally demonstrate a ring geometry all-fiber cavity system for cavity quantum electrodynamics with an ensemble of cold atoms. The fiber cavity contains a nanofiber section which mediates atom-light interactions through an evanescent field.
We investigate the effect of far-off-resonant trapping light on ultracold bosonic RbCs molecules. We use kHz-precision microwave spectroscopy to measure the differential AC Stark shifts between the ground and first excited rotational levels of the mo