ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient echo memory in an ultra-high optical depth cold atomic ensemble

156   0   0.0 ( 0 )
 نشر من قبل Ben Sparkes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a $^{87}$Rb magneto-optical trap with a peak optical depth of 1000 for the D2 $F=2 rightarrow F=3$ transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of $80pm 2$% and coherence times up to 195 $mu$s, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.



قيم البحث

اقرأ أيضاً

The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%.
We study the storage and retrieval of images in a hot atomic vapor using the gradient echo memory protocol. We demonstrate that this technique allows for the storage of multiple spatial modes. We study both spatial and temporal multiplexing by storin g a sequence of two different images in the atomic vapor. The effect of atomic diffusion on the spatial resolution is discussed and characterized experimentally. For short storage time a normalized cross-correlation between a retrieved image and its input of 88 % is reported.
Long-lived storage of arbitrary transverse multimodes is important for establishing a high-channel-capacity quantum network. Most of the pioneering works focused on atomic diffusion as the dominant impact on the retrieved pattern in an atom-based mem ory. In this work, we demonstrate that the unsynchronized Larmor precession of atoms in the inhomogeneous magnetic field dominates the distortion of the pattern stored in a cold-atom-based memory. We find that this distortion effect can be eliminated by applying a strong uniform polarization magnetic field. By preparing atoms in magnetically insensitive states, the destructive interference between different spin-wave components is diminished, and the stored localized patterns are synchronized further in a single spin-wave component; then, an obvious enhancement in preserving patterns for a long time is obtained. The reported results are very promising for studying transverse multimode decoherence in storage and high-dimensional quantum networks in the future.
We report on the delay of optical pulses using electromagnetically induced transparency in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing impacts on EIT behaviour, we conduct the exper iment in both rubidium 85 and rubidium 87. Comparison with theory shows excellent agreement in both isotopes. In rubidium 87, negligible four-wave mixing was observed and we obtained one pulse-width of delay with 50% efficiency. In rubidium 85, four-wave-mixing contributes to the output. In this regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing temporally multimode delay, which we demonstrate by compressing two pulses into the memory medium.
One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spati ally visualizes this phenomenon in an inhomogeneous gas of ultra-cold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the timescale for the excitation depends on the atomic density at the beam position.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا