ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporally multiplexed storage of images in a Gradient Echo Memory

259   0   0.0 ( 0 )
 نشر من قبل Quentin Glorieux
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the storage and retrieval of images in a hot atomic vapor using the gradient echo memory protocol. We demonstrate that this technique allows for the storage of multiple spatial modes. We study both spatial and temporal multiplexing by storing a sequence of two different images in the atomic vapor. The effect of atomic diffusion on the spatial resolution is discussed and characterized experimentally. For short storage time a normalized cross-correlation between a retrieved image and its input of 88 % is reported.



قيم البحث

اقرأ أيضاً

The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the $Lambda$-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.
The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%.
Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs t o be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a $^{87}$Rb magneto-optical trap with a peak optical depth of 1000 for the D2 $F=2 rightarrow F=3$ transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of $80pm 2$% and coherence times up to 195 $mu$s, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.
We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the syst em we measure up to 97pm1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86pm4% for 1.5 mu s storage time, which is 5,000 times the pulse duration. Hence high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks.
We show that portions of an image written into a gradient echo memory can be individually retrieved or erased on demand, an important step towards processing a spatially multiplexed quantum signal. Targeted retrieval is achieved by locally addressing the transverse plane of the storage medium, a warm 85Rb vapor, with a far-detuned control beam. Spatially addressable erasure is similarly implemented by imaging a bright beam tuned near the 85Rb D1 line in order to scatter photons and induce decoherence. Under our experimental conditions atomic diffusion is shown to impose an upper bound on the effective spatial capacity of the memory. The decoherence induced by the optical eraser is characterized and modeled as the response of a two level atom in the presence of a strong driving field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا