ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective strong coupling of cold atoms to an all-fiber ring cavity

231   0   0.0 ( 0 )
 نشر من قبل Samuel Ruddell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate a ring geometry all-fiber cavity system for cavity quantum electrodynamics with an ensemble of cold atoms. The fiber cavity contains a nanofiber section which mediates atom-light interactions through an evanescent field. We observe well-resolved, vacuum Rabi splitting of the cavity transmission spectrum in the weak driving limit due to a collective enhancement of the coupling rate by the ensemble of atoms within the evanescent field, and we present a simple theoretical model to describe this. In addition, we demonstrate a method to control and stabilize the resonant frequency of the cavity by utilizing the thermal properties of the nanofiber.



قيم البحث

اقرأ أيضاً

We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap and transferred to a three-dimensional trap which inter sects the cavity mode. The apparatus is described in detail and the first observations of strong coupling with potassium atoms are presented. Collective strong coupling of atoms and light is demonstrated via the splitting of the cavity transmission spectrum and the avoided crossing of the normal modes.
170 - Shinya Kato , Takao Aoki 2015
We demonstrate an all-fiber cavity QED system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity tra nsmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting.
We observe vacuum Rabi splitting in a lossy nearly confocal cavity indicating the strong coupling regime, despite a weak single-atom single-mode coupling. Strong collective interaction manifests itself in the typical $sqrt{N}$-dependence of the norma l mode splitting on the number of atoms $N$. The $TEM_{00}$-mode coupling parameters are $(g,kappa,gamma)=2pitimes(0.12,0.8,2.6)$ MHz and up to $(1.33pm 0.08)times10^5$ cesium atoms were loaded into the mode volume.
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping $^{87}$Rb atoms that are near maximally coupled to the cavitys standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا