ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on the Identities of the Gluon Tree Amplitudes

112   0   0.0 ( 0 )
 نشر من قبل Yang Zhang
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Bjerrum-Bohr, Damgaard, Feng and Sondergaard derived a set of new interesting quadratic identities of the Yang-Mills tree scattering amplitudes. Here we comment that these quadratic identities of YM amplitudes actually follow directly from the KLT relation for graviton-dilaton-axion scattering amplitudes (in 4 dimensional spacetime). This clarifies their physical origin and also provides a simpler version of the new identities. We also comment that the recently discovered Bern-Carrasco-Johansson identities of YM helicity amplitudes can be verified by using (repeatedly) the Schouten identity. We also point out additional quadratic identities that can be written down from the KLT relations.



قيم البحث

اقرأ أيضاً

Recently, Bern, Carrasco and Johansson conjectured dual identities inside the gluon tree scattering amplitudes. In this paper, we use the properties of the heterotic string and open string tree scattering amplitudes to refine and derive these dual id entities. These identities can be carried over to loop amplitudes using the unitarity method. Furthermore, given the $M$-gluon (as well as gluon-gluino) tree amplitudes, $M$-graviton (as well as graviton-gravitino) tree scattering amplitudes can be written down immediately, avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams for graviton scattering amplitudes.
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from low er-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equiva lence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
We study loop corrections to scattering amplitudes in the world-volume theory of a probe D3-brane, which is described by the supersymmetric Dirac-Born-Infeld theory. We show that the D3-brane loop superamplitudes can be obtained from the tree-level s uperamplitudes in the world-volume theory of a probe M5-brane (or D5-brane). The M5-brane theory describes self-interactions of an abelian tensor supermultiplet with $(2,0)$ supersymmetry, and the tree-level superamplitudes are given by a twistor formula. We apply the construction to the maximally-helicity-violating (MHV) amplitudes in the D3-brane theory at one-loop order, which are purely rational terms (except for the four-point amplitude). The results are further confirmed by generalised unitarity methods. Through a supersymmetry reduction on the M5-brane tree-level superamplitudes, we also construct one-loop corrections to the non-supersymmetric D3-brane amplitudes, which agree with the known results in the literature.
The compute efficiency of Monte-Carlo event generators for the Large Hadron Collider is expected to become a major bottleneck for simulations in the high-luminosity phase. Aiming at the development of a full-fledged generator for modern GPUs, we stud y the performance of various recursive strategies to compute multi-gluon tree-level amplitudes. We investigate the scaling of the algorithms on both CPU and GPU hardware. Finally, we provide practical recommendations as well as baseline implementations for the development of future simulation programs. The GPU implementations can be found at: https://www.gitlab.com/ebothmann/blockgen-archive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا