ترغب بنشر مسار تعليمي؟ اضغط هنا

On planar gluon amplitudes/Wilson loops duality

180   0   0.0 ( 0 )
 نشر من قبل Gregory Korchemsky
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equivalence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.



قيم البحث

اقرأ أيضاً

We present further evidence for a dual conformal symmetry in the four-gluon planar scattering amplitude in N=4 SYM. We show that all the momentum integrals appearing in the perturbative on-shell calculations up to five loops are dual to true conforma l integrals, well defined off shell. Assuming that the complete off-shell amplitude has this dual conformal symmetry and using the basic properties of factorization of infrared divergences, we derive the special form of the finite remainder previously found at weak coupling and recently reproduced at strong coupling by AdS/CFT. We show that the same finite term appears in a weak coupling calculation of a Wilson loop whose contour consists of four light-like segments associated with the gluon momenta. We also demonstrate that, due to the special form of the finite remainder, the asymptotic Regge limit of the four-gluon amplitude coincides with the exact expression evaluated for arbitrary values of the Mandelstam variables.
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram s of a supersymmetric Wilson loop, where one can perform loop integrations and be left with simple integrals along edges. As the main application, we compute analytically for the first time, the symbol of the generic ($ngeq 12$) double pentagon, which gives two-loop MHV amplitudes and components of NMHV amplitudes to all multiplicities. We represent the double pentagon as a two-fold $mathrm{d} log$ integral of a one-loop hexagon, and the non-trivial part of the integration lies at rationalizing square roots contained in the latter. We obtain a remarkably compact algebraic words which contain $6$ algebraic letters for each of the $16$ square roots, and they all nicely cancel in combinations for MHV amplitudes and NMHV components which are free of square roots. In addition to $96$ algebraic letters, the alphabet consists of $152$ dual conformal invariant combinations of rational letters.
161 - P. N. Kopnin , A. Krikun 2011
The aim of this work is to study the holographic dual to the gauge theory with a nonzero gluon condensate. We check for consistency the holographic way of describing the condensate and calculate the expectation value of a small Wilson loop in the pre sence of the gluon condensate, thus obtaining the relevant coefficient in the operator product expansion of the small loop in different holographic models. We also study the effect of the condensate on the Gross-Ooguri phase transition in the correlator of two circular Wilson loops in parallel and concentric configurations. In the numerical study of the concentric case, we find that the phase transition changes its order when the size of the loops is of order of the gluon condensate. We report this change of the phase transition order to be a new effect in Wilson loop correlators.
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio ns and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.
The MHV scattering amplitudes in planar N=4 SYM are dual to bosonic light-like Wilson loops. We explore various proposals for extending this duality to generic non-MHV amplitudes. The corresponding dual object should have the same symmetries as the s cattering amplitudes and be invariant to all loops under the chiral half of the N=4 superconformal symmetry. We analyze the recently introduced supersymmetric extensions of the light-like Wilson loop (formulated in Minkowski space-time) and demonstrate that they have the required symmetry properties at the classical level only, up to terms proportional to field equations of motion. At the quantum level, due to the specific light-cone singularities of the Wilson loop, the equations of motion produce a nontrivial finite contribution which breaks some of the classical symmetries. As a result, the quantum corrections violate the chiral supersymmetry already at one loop, thus invalidating the conjectured duality between Wilson loops and non-MHV scattering amplitudes. We compute the corresponding anomaly to one loop and solve the supersymmetric Ward identity to find the complete expression for the rectangular Wilson loop at leading order in the coupling constant. We also demonstrate that this result is consistent with conformal Ward identities by independently evaluating corresponding one-loop conformal anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا