ﻻ يوجد ملخص باللغة العربية
We present an extended structural study of globular complexes made by mixing a positively charge protein (lysozyme) and a negatively charged polyelectrolyte (PSS). We study the influence of all the parameters that may act on the structure of the complexes (charge densities and concentration of the species, partial hydrophobicity of the polyion chain, ionic strength). The structures on a 15 scale range lying from 10{AA} to 1000{AA} are measured by SANS. Whatever the conditions, the same structure is found, based on the formation of dense globules of ~ 100{AA} with a neutral core and a volume fraction of organic species (compacity) of ~ 0.3. At higher scale, the globules are arranged in fractal aggregates. Zetametry measurements show that globular complexes have a total positive charge when the charge ratio of species introduced in the mixture [-]/[+]intro > 1 and a total 20 negative charge when [-]/[+]intro < 1. This comes from the presence of charged species in slight excess in a layer at the surface of the globules. The globule finite size is determined by the Debye length k-1 whatever the way the physicochemical parameters are modified in the system, as long as chain-protein interactions are of simple electrostatics nature. The mean number of proteins per primary complex Nlyso_comp grows exponentially on a master curve with k-1. This enables to picture 25 the mechanisms of formation of the complexes. There is an initial stage of formation where the growth of the complexes is only driven by attractions between opposite species associated with counterion release. During the growth of the complexes, the globules progressively repell themselves by electrostatic repulsion because their charge increases. When this repulsion becomes dominent in the system, globules stop growing and behave like charged colloids: they aggregate 30 with a RLCA process, which leads to the formation of fractal aggregates of dimension Df 2.1.
Aggregation of nanoparticles of given size $R$ induced by addition of a polymer strongly depends on its degree of rigidity. This is shown here on a large variety of silica nanoparticle self-assemblies obtained by electrostatic complexation with caref
We study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions
The structure and dynamics of confined suspensions of particles of arbitrary shape is of interest in multiple disciplines, from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and partic
The collapse kinetics of strongly charged polyelectrolytes in poor solvents is investigated by Langevin simulations and scaling arguments. The rate of collapse increases sharply as the valence of counterions, z, increases from one to four. The combin
Dilute solutions of strongly charged polymer electrolytes undergo, upon addition of multivaltent salt to the solutions, a phase transition from extended conformations to collapsed or bundled ones. Upon further addition of salt they experience a secon