ترغب بنشر مسار تعليمي؟ اضغط هنا

Escape and Finite-Size Scaling in Diffusion-Controlled Annihilation

73   0   0.0 ( 0 )
 نشر من قبل Eli Ben-Naim
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions $d>2$ where a finite number of particles typically survive the annihilation process. Using the rate equation approach and scaling techniques we investigate the average number of surviving particles, $M$, as a function of the initial number of particles, $N$. In three dimensions, for instance, we find the scaling law $Msim N^{1/3}$ in the asymptotic regime $Ngg 1$. We show that two time scales govern the reaction kinetics: the diffusion time scale, $Tsim N^{2/3}$, and the escape time scale, $tausim N^{4/3}$. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.



قيم البحث

اقرأ أيضاً

95 - N.S. Tonchev 2004
The present review is devoted to the problems of finite-size scaling due to the presence of long-range interaction decaying at large distance as $1/r^{d+sigma}$, where $d$ is the spatial dimension and the long-range parameter $sigma>0$. Classical and quantum systems are considered.
We study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We focus on sparse initial conditions where particles oc cupy a subspace of dimension $delta$ that is embedded in a larger space of dimension $d$. We find that the co-dimension $Delta=d-delta$ governs the behavior. All particles disappear when the co-dimension is sufficiently small, $Deltaleq 2$; otherwise, a finite fraction of particles indefinitely survive. We establish the asymptotic behavior of the probability $S(t)$ that a test particle survives until time $t$. When the subspace is a line, $delta=1$, we find inverse logarithmic decay, $Ssim (ln t)^{-1}$, in three dimensions, and a modified power-law decay, $Ssim (ln t),t^{-1/2}$, in two dimensions. In general, the survival probability decays algebraically when $Delta <2$, and there is an inverse logarithmic decay at the critical co-dimension $Delta=2$.
77 - Yuting Wang , Tobias Gulden , 2016
We consider scaling of the entanglement entropy across a topological quantum phase transition in one dimension. The change of the topology manifests itself in a sub-leading term, which scales as $L^{-1/alpha}$ with the size of the subsystem $L$, here $alpha$ is the R{e}nyi index. This term reveals the universal scaling function $h_alpha(L/xi)$, where $xi$ is the correlation length, which is sensitive to the topological index.
The critical temperature of thin Fe layers on Ir(100) is measured through Mo{ss}bauer spectroscopy as a function of the layer thickness. From a phenomenological finite-size scaling analysis, we find an effective shift exponent lambda = 3.15 +/- 0.15, which is twice as large as the value expected from the conventional finite-size scaling prediction lambda=1/nu, where nu is the correlation length critical exponent. Taking corrections to finite-size scaling into account, we derive the effective shift exponent lambda=(1+2Delta_1)/nu, where Delta_1 describes the leading corrections to scaling. For the 3D Heisenberg universality class, this leads to lambda = 3.0 +/- 0.1, in agreement with the experimental data. Earlier data by Ambrose and Chien on the effective shift exponent in CoO films are also explained.
230 - A.D. Bruce , N.B. Wilding 1999
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi on is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا