ﻻ يوجد ملخص باللغة العربية
The structure and dynamics of confined suspensions of particles of arbitrary shape is of interest in multiple disciplines, from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and particle-wall forces, including many-body fluctuating hydrodynamic interactions. Here, we report a computational study on the diffusion of spherical and cylindrical particles confined in a spherical cavity. We rely on an Immersed-Boundary General geometry Ewald-like method to capture lubrication and long-range hydrodynamics, and include appropriate non-slip conditions at the confining walls. A Chebyshev polynomial approximation is used to satisfy the fluctuation-dissipation theorem for the Brownian suspension. We explore how lubrication, long-range hydrodynamics, particle volume fraction and shape affect the equilibrium structure and the diffusion of the particles. It is found that once the particle volume fraction is greater than $10%$, the particles start to form layered aggregates that greatly influence particle dynamics. Hydrodynamic interactions strongly influence the particle diffusion by inducing spatially dependent short-time diffusion coefficients, stronger wall effects on the particle diffusion towards the walls, and a sub-diffusive regime --caused by crowding-- in the long-time particle mobility. The level of asymmetry of the cylindrical particles considered here is enough to induce an orientational order in the layered structure, decreasing the diffusion rate and facilitating a transition to the crowded mobility regime at low particle concentrations. Our results offer fundamental insights into the diffusion and distribution of globular and fibrillar proteins inside cells.
Considering a granular fluid of inelastic smooth hard spheres we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite
We derive from first principles the mechanical pressure $P$, defined as the force per unit area on a bounding wall, in a system of spherical, overdamped, active Brownian particles at density $rho$. Our exact result relates $P$, in closed form, to bul
We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local vel
We consider the active Brownian particle (ABP) model for a two-dimensional microswimmer with fixed speed, whose direction of swimming changes according to a Brownian process. The probability density for the swimmer evolves according to a Fokker-Planc
Dynamics of regular clusters of many non-touching particles falling under gravity in a viscous fluid at low Reynolds number are analysed within the point-particle model. Evolution of two families of particle configurations is determined: 2 or 4 regul