ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of dilute polyelectrolytes: Collapse and redissolution by association of counterions and coions

405   0   0.0 ( 0 )
 نشر من قبل Francisco J. Solis
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dilute solutions of strongly charged polymer electrolytes undergo, upon addition of multivaltent salt to the solutions, a phase transition from extended conformations to collapsed or bundled ones. Upon further addition of salt they experience a second transition, a redissolution back into extended conformations. This paper presents a theoretical study of the structure and properties of the phase diagram of these solutions. On the basis of simple phenomenological observations a schematic phase diagram is constructed that allows a simple and explicit determination of the direction of the tie lines within the coexistence region. The actual shape of the coexistence boundary is determined by means of a model mean free energy functional that explicitly includes the possibility of association of both counterions and coions to the electrolyte. It is found that it is possible to redissolve the electrolytes into conformations where the bare charge of the electrolyte is overcompensated by the counterions but, due to the associated coions, can have either sign of total effective charge. When coion association is possible, the redissolution approximately coincides with the reassociation of the coions and counterions in the bulk of the solution.



قيم البحث

اقرأ أيضاً

123 - E.Allahyarov , H.Lowen , G.Gompper 2004
The distance-resolved effective interaction potential between two parallel DNA molecules is calculated by computer simulations with explicit tetravalent counterions and monovalent salt. Adding counterions first yields an attractive minimum in the pot ential at short distances which then disappears in favor of a shallower minimum at larger separations. The resulting phase diagram includes a DNA-condensation and redissolution transition and a stable mesocrystal with an intermediate lattice constant for high counterion concentration.
The collapse of flexible polyelectrolytes in a solution of multivalent counterions is studied by means of a two state model. The states correspond to rod-like and spherically collapsed conformations respectively. We focus on the very dilute monomer c oncentration regime where the collapse transition is found to occur when the charge of the multivalent salt is comparable (but smaller) to that of the monomers. The main contribution to the free energy of the collapsed conformation is linear in the number of monomers $N$, since the internal state of the collapsed polymer approaches that of an amorphous ionic solid. The free energy of the rod-like state grows as $Nln N$, due to the electrostatic energy associated with that shape. We show that practically all multivalent counterions added to the system are condensed into the polymer chain, even before the collapse.
We provide a theory for the dynamics of collapse of strongly charged polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin equation. After the initial stage, in which counterions condense onto PE, the mechanism of approach to the gl obular state is similar for PE and PA. In both instances, metastable pearl-necklace structures form in characteristic time scale that is proportional to N^{4/5} where N is the number of monomers. The late stage of collapse occurs by merger of clusters with the largest one growing at the expense of smaller ones (Lifshitz- Slyozov mechanism). The time scale for this process T_{COLL} N. Simulations are used to support the proposed collapse mechanism for PA and PE.
The collapse kinetics of strongly charged polyelectrolytes in poor solvents is investigated by Langevin simulations and scaling arguments. The rate of collapse increases sharply as the valence of counterions, z, increases from one to four. The combin ed system of the collapsed chain and the condensed counterions forms a Wigner crystal when the solvent quality is not too poor provided z >= 2. For very poor solvents the morphology of the collapsed structure resembles a Wigner glass. For a fixed z and quality of the solvent the efficiency of collapse decreases dramatically as the size of the counterion increases. A valence dependent diagram of states in poor solvents is derived.
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as e leven candidate crystal structures, we determine the melting temperature for various pressure values, also with the help of exact free energy calculations. Among the prominent features of this model are pressure-driven reentrant melting and the stabilization of a columnar phase for intermediate temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا