ﻻ يوجد ملخص باللغة العربية
We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin film reflectivity. The instrument is comprised of a limited three circle ({theta}, 2{theta}, {chi}) diffractometer with an additional removable rotation ({phi}) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorised motions are provided for the precise positioning of the sample onto the diffractometer centre of rotation, and for positioning the centre of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The syst
We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the puls
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for {it in situ}, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advanta
Resonant soft x-ray scattering (RSXS) is a leading probe of valence band order in materials best known for detecting charge density wave order in the copper-oxide superconductors. One of the biggest limitations on the RSXS technique is the presence o
We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved