ﻻ يوجد ملخص باللغة العربية
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin f
We present a combined experimental and computational method which enables the precise determination of the atomic positions in a thin film using CuK{alpha} radiation, only. The capabilities of this technique surpass simple structure refinement and al
High-quality dielectric-semiconductor interfaces are critical for reliable high-performance transistors. We report the in-situ metalorganic chemical vapor deposition (MOCVD) of Al$_2$O$_3$ on $beta$-Ga$_2$O$_3$ as a potentially better alternative to
Linear polarization analysis of hard x-rays is employed to probe electronic anisotropies in metal-containing complexes with very high selectivity. We use the pronounced linear dichroism of nuclear resonant x-ray scattering to determine electric field
A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthe