ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

74   0   0.0 ( 0 )
 نشر من قبل Sheng-Nian Luo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for {it in situ}, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon energy, high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal ($<$100 ps) and spatial ($sim$2 $mu$m) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

قيم البحث

اقرأ أيضاً

We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin f ilm reflectivity. The instrument is comprised of a limited three circle ({theta}, 2{theta}, {chi}) diffractometer with an additional removable rotation ({phi}) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorised motions are provided for the precise positioning of the sample onto the diffractometer centre of rotation, and for positioning the centre of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imagi ng (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
X-ray phase-contrast imaging (XPCI) is a versatile technique with wide-ranging applications, particularly in the fields of biology and medicine. Where X-ray absorption radiography requires high density ratios for effective imaging, XPCI is more sensi tive to the density gradients inside a material. In this letter, we apply XPCI to the study of laser-driven shockc waves. We used two laser beams from the Petawatt High-Energy Laser for Heavy Ion EXperiments (PHELIX) at GSI: one to launch a shock wave and the other to generate an X-ray source for XPCI. Our results suggest that this technique is suitable for the study of warm dense matter (WDM), inertial confinement fusion (ICF) and laboratory astrophysics.
Transition Edge Sensor (TES) spectrometers for hard X-ray beamline science will enable improved X-ray emission and absorption spectroscopy in the information-rich 2 to 20 keV energy range. We are building a TES-based instrument for the Advanced Photo n Source (APS) synchrotron, to be made available to beamline users. 24-pixel prototype arrays have recently been fabricated and tested. The first spectroscopy measurements using these arrays are promising, with a best single-pixel energy resolution of 11.2 eV and saturation energy > 20 keV. We present a series of recent X-ray Fluorescence measurements involving transition metal elements and multi-element samples with closely spaced emission lines, in particular a Cu-Ni-Co thin film and a foil of Cu and Hf. The TES-measured spectra are directly compared to spectra measured with silicon drift detectors at an APS beamline, demonstrating the improved X-ray science made possible by TES spectrometers.
406 - F. Duc , X. Fabr`eges , T. Roth 2014
We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the puls ed coil, and a helium cryostat allowing sample temperatures from 1.5 up to 250 K. Using a 1.15MJ mobile generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 16.5 ms and a repetition rate of 2 pulses/hour at 31 T. The setup was validated for single crystal diffraction on the ESRF beamline ID06.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا