ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant soft x-ray scattering from stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ detected by a transition edge sensor array detector

219   0   0.0 ( 0 )
 نشر من قبل Peter Abbamonte
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant soft x-ray scattering (RSXS) is a leading probe of valence band order in materials best known for detecting charge density wave order in the copper-oxide superconductors. One of the biggest limitations on the RSXS technique is the presence of a severe fluorescence background which, like the RSXS cross section itself, is enhanced under resonant conditions. This background prevents the study of weak signals such as diffuse scattering from glassy or fluctuating order that is spread widely over momentum space. Recent advances in superconducting transition edge sensor (TES) detectors have led to major improvements in energy resolution and detection efficiency in the soft x-ray range. Here, we perform a RSXS study of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ at the Cu $L_{3/2}$ edge (932.2 eV) using a TES detector with 1.5 eV resolution, to evaluate its utility for mitigating the fluorescence background problem. We find that, for suitable degree of detuning from the resonance, the TES rejects the fluorescence background, leading to a 5 to 10 times improvement in the statistical quality of the data compared to an equivalent, energy-integrated measurement. We conclude that a TES presents a promising approach to reducing background in RSXS studies and may lead to new discoveries in materials exhibiting valence band order that is fluctuating or glassy.

قيم البحث

اقرأ أيضاً

The charge and spin correlations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ (LBCO 1/8) are studied using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). The static charge order (CO) is observed at a wavevector of $(0.24,0)$ and its charge nature co nfirmed by measuring the dependence of this peak on the incident x-ray polarization. The paramagnon excitation in LBCO 1/8 is then measured as it disperses through the CO wavevector. Within the experimental uncertainty no changes are observed in the paramagnon due to the static CO, and the paramagnon seems to be similar to that measured in other cuprates, which have no static CO. Given that the stripe correlation modulates both the charge and spin degrees of freedom, it is likely that subtle changes do occur in the paramagnon due to CO. Consequently, we propose that future RIXS measurements, realized with higher energy resolution and sensitivity, should be performed to test for these effects.
Charge order is universal among high-T$_c$ cuprates but its relevance to superconductivity is not established. It is widely believed that, while static order competes with superconductivity, dynamic order may be favorable and even contribute to Coope r pairing. We use time-resolved resonant soft x-ray scattering to study the collective dynamics of the charge order in the prototypical cuprate, La$_{2-x}$Ba$_x$CuO$_4$. We find that, at energy scales $0.4$ meV $ lesssim omega lesssim 2$ meV, the excitations are overdamped and propagate via Brownian-like diffusion. At energy scales below 0.4 meV the charge order exhibits dynamic critical scaling, displaying universal behavior arising from propagation of topological defects. Our study implies that charge order is dynamic, so may participate tangibly in superconductivity.
81 - S. Sugai , N. Hayamizu 2000
The dynamical stripe structure relating to the 1/8 problem was investigated in La$_{2-x}$Sr$_x$CuO$_4$ utilizing the high frequency response of Raman scattering. The split of the two-magnon peak due to the formation of the stripe structure was observ ed at whole Sr concentration region from $x=0.035$ to 0.25 at low temperatures. Especially clear split was observed at low carrier concentration region $x=0.035 - 0.06$ and at $x sim 1/8$. The onset temperatures of these stripe structures are as high as 300-350 K, which are much higher than the temperatures measured by slow response probes.
We have studied structural phase transitions in high quality underdoped La$_{2-x}$Ba$_x$CuO$_4$ single crystals using high resolution x-ray scattering techniques. Critical properties associated with the continuous High Temperature Tetragonal (HTT, $I 4/mmm$) to Middle Temperature Orthorhombic (MTO, $Cmca$) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08 and we find that all behavior is consistent with three dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the Low Temperature Tetragonal (LTT, $P4_{2}/ncm$) phase, below the strongly discontinuous MTO$to$LTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wavevectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases, or that it is orthorhombic with very small orthorhombic strain, consistent with the ``less orthorhombic low temperature structure previously reported in mixed La$_{2-x}$Sr$_{x-y}$Ba$_y$CuO$_4$ single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La$_{2-x}$Ba$_x$CuO$_4$ and find good agreement with results obtained on polycrystalline samples.
210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonli near at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا