ﻻ يوجد ملخص باللغة العربية
The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.
The effect of grain boundaries and wrinkles on the electrical properties of polycrystalline graphene is pronounced. Here we investigate the stitching between grains of polycrystalline graphene, specifically, overlapping of layers at the boundaries, g
Graphene edges are of particular interest, since their chirality determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with well defined edges oriented at different crystallographic directions. The po
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some
Raman spectroscopy is a powerful tool for characterizing the local properties of graphene. Here, we introduce a method for evaluating unknown strain configurations and simultaneous doping. It relies on separating the effects of hydrostatic strain (pe