ﻻ يوجد ملخص باللغة العربية
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.
In this paper, the electronic properties of 30{deg} twisted double bilayer graphene, which loses the translational symmetry due to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the interlayer
A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy,
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel
We investigated a suspended bilayer graphene where the bottom (top) layer is doped by boron (nitrogen) substitutional atoms by using Density Functional Theory (DFT) calculations. We found that at high dopant concentration (one B-N pair every 32 C ato
The most important bands for the evaluation of strain in graphene (the 2D and 2D prime modes) are investigated. It is shown that for Bernal-stacked bilayers, the two-phonon Raman features have three different components that can be assigned to proces