ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy

62   0   0.0 ( 0 )
 نشر من قبل Niclas Sven Mueller
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Raman spectroscopy is a powerful tool for characterizing the local properties of graphene. Here, we introduce a method for evaluating unknown strain configurations and simultaneous doping. It relies on separating the effects of hydrostatic strain (peak shift) and shear strain (peak splitting) on the Raman spectrum of graphene. The peak shifts from hydrostatic strain and doping are separated with a correlation analysis of the 2D and G frequencies. This enables us to obtain the local hydrostatic strain, shear strain and doping without any assumption on the strain configuration prior to the analysis. We demonstrate our approach for two model cases: Graphene under uniaxial stress on a PMMA substrate and graphene suspended on nanostructures that induce an unknown strain configuration. We measured $omega_mathrm{2D}/omega_mathrm{G} = 2.21 pm 0.05$ for pure hydrostatic strain. Raman scattering with circular corotating polarization is ideal for analyzing strain and doping, especially for weak strain when the peak splitting by shear strain cannot be resolved.



قيم البحث

اقرأ أيضاً

Graphene edges are of particular interest, since their chirality determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with well defined edges oriented at different crystallographic directions. The po sition, width and intensity of G and D peaks at the edges are studied as a function of the incident light polarization. The D-band is strongest for light polarized parallel to the edge and minimum for perpendicular orientation. Raman mapping shows that the D peak is localized in proximity of the edge. The D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well defined angles, they are not necessarily microscopically ordered.
181 - Nicola Ferralis 2010
The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compar ed to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.
140 - C. Stampfer , L. Wirtz , A. Jungen 2007
We present spatially resolved Raman images of the G and 2D lines of single-layer graphene flakes. The spatial fluctuations of G and 2D lines are correlated and are thus shown to be affiliated with local doping domains. We investigate the position of the 2D line -- the most significant Raman peak to identify single-layer graphene -- as a function of charging up to |n|~4 10^12 cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening with respect to electron and hole-doping, the 2D line shows a weak and slightly asymmetric stiffening for low doping. Additionally, the line width of the 2D line is, in contrast to the G line, doping-independent making this quantity a reliable measure for identifying single-layer graphene.
240 - I. Calizo , W. Bao , F. Miao 2007
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.
153 - M. Bruna , A. K. Ott , M. Ijas 2014
We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7eV, as monitored by textit{in-situ} Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا