ﻻ يوجد ملخص باللغة العربية
A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction, and super-hydrophobic surfaces display strong drag-reduction in the laminar regime. Here we consider theoretically a super-hydrophobic surface composed of circular posts (so called fakir geometry) located on a planar rectangular lattice. Using a superposition of point forces with suitably spatially-dependent strength, we derive the effective surface slip length for a planar shear flow on such a fakir surface as the solution to an infinite series of linear equations. In the asymptotic limit of small surface coverage by the posts, the series can be interpreted as Riemann sums, and the slip length can be obtained analytically. For posts on a square lattice, our analytical results are in excellent quantitative agreement with previous numerical computations.
Direct Numerical Simulations of two superposed fluids in a channel with a textured surface on the lower wall have been carried out. A parametric study varying the viscosity ratio between the two fluids has been performed to mimic both {bf idealised}
The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge-selective surfaces (permselective membranes, electrodes, or systems of micro- and nanochannels) is inv
A weakly deformable droplet impinging on a rigid surface rebounds if the surface is intrinsically hydrophobic or if the gas film trapped underneath the droplet is able to keep the interfaces from touching. A simple, physically motivated model inspire
The friction felt by a speed skater is calculated as function of the velocity and tilt angle of the skate. This calculation is an extension of the more common theory of friction of upright skates. Not only in rounding a curve the skate has to be tilt
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the at