ﻻ يوجد ملخص باللغة العربية
The friction felt by a speed skater is calculated as function of the velocity and tilt angle of the skate. This calculation is an extension of the more common theory of friction of upright skates. Not only in rounding a curve the skate has to be tilted, but also in straightforward skating small tilt angles occur, which turn out to be of noticeable influence on the friction. As for the upright skate the friction remains fairly insensitive of the velocities occurring in speed skating.
Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations t
For a pendant drop whose contact line is a circle of radius $r_0$, we derive the relation $mgsinalpha={piover2}gamma r_0,(costheta^{rm min}-costheta^{rm max})$ at first order in the Bond number, where $theta^{rm min}$ and $theta^{rm max}$ are the con
A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction,
Laminar flow over a bubble mattress is expected to experience a significant reduction in friction since the individual surfaces of the bubbles are shear-free. However, if the bubbles are sufficiently curved, their protrusion into the fluid and along
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and ze