ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrokinetic Instability near Charge-Selective Hydrophobic Surfaces

139   0   0.0 ( 0 )
 نشر من قبل Vladimir Shelistov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge-selective surfaces (permselective membranes, electrodes, or systems of micro- and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.



قيم البحث

اقرأ أيضاً

A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge selective surface (electric membrane, electrode, or system of micro-/nanochannels) is carried out and analyzed. A special finite-difference method was use d for the space discretization along with a semi-implicit $3frac{1}{3}$-step Runge-Kutta scheme for the integration in time. The calculations employed parallel computing. Three characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles and triangles. The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary pulses.
A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction, and super-hydrophobic surfaces display strong drag-reduction in the laminar regime. Here we consider theoretically a super-hydrophobic surface composed of circular posts (so called fakir geometry) located on a planar rectangular lattice. Using a superposition of point forces with suitably spatially-dependent strength, we derive the effective surface slip length for a planar shear flow on such a fakir surface as the solution to an infinite series of linear equations. In the asymptotic limit of small surface coverage by the posts, the series can be interpreted as Riemann sums, and the slip length can be obtained analytically. For posts on a square lattice, our analytical results are in excellent quantitative agreement with previous numerical computations.
149 - A. Gopinath 2005
A weakly deformable droplet impinging on a rigid surface rebounds if the surface is intrinsically hydrophobic or if the gas film trapped underneath the droplet is able to keep the interfaces from touching. A simple, physically motivated model inspire d by analysis of droplets colliding with deformable interfaces is proposed in order to investigate the dynamics of the rebound process and the effects of gravity. The analysis yields estimates of the bounce time that are in very good quantitative agreement with recent experimental data (Okumura et. al., (2003)) and provides significant improvement over simple scaling results.
A new type of instability - electrokinetic instability - and an unusual transition to chaotic motion near a charge-selective surface was studied by numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. Two kinds of initial conditions were considered: (a) white noise initial conditions to mimic room disturbances and subsequent natural evolution of the solution; (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution; two-dimensional steady electroconvective vortices (stationary point in a proper phase space); unsteady vortices aperiodically changing their parameters (homoclinic contour); periodic motion (limit cycle); and chaotic motion. The transition to chaotic motion did not include Hopf bifurcation. Numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the experimentally observed absence of regular (near-sinusoidal) oscillations for the overlimiting regimes. There is a qualitative agreement of the experimental and the theoretical values of the threshold of instability, the dominant size of the observed coherent structures, and the experimental and theoretical volt-current characteristics.
109 - I. Arenas , E. Garcia , M. K. Fu 2018
Direct Numerical Simulations of two superposed fluids in a channel with a textured surface on the lower wall have been carried out. A parametric study varying the viscosity ratio between the two fluids has been performed to mimic both {bf idealised} super hydrophobic and liquid infused surfaces and assess its effect on the frictional, form and total drag for three different textured geometries: longitudinal square bars, transversal square bars and staggered cubes. The interface between the two fluids is assumed to be slippery in the streamwise and spanwise directions and not deformable in the vertical direction, corresponding to the ideal case of infinite surface tension. To identify the role of the fluid-fluid interface, an extra set of simulations with a single fluid has been carried out and compared to the results obtained with two fluids of same viscosity separated by the interface. The drag and the maximum wall-normal velocity fluctuations were found to be highly correlated for all the surface configurations, whether they reduce or increase the drag. This implies that the structure of the near-wall turbulence is dominated by the total shear and not by the local boundary condition of super-hydrophobic, liquid--infused or rough surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا