ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of soliton pulse compression in photonic crystal waveguides

152   0   0.0 ( 0 )
 نشر من قبل Chad Husko
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.



قيم البحث

اقرأ أيضاً

Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensatio n. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region.
All-optical amplification of the light pulse in a weakly coupled two nonlinear photonic crystal waveguides (PCWs) is proposed. We consider pillar-type PCWs, which consist of the periodically distributed circular rods made from a Kerr-type dielectric material. Dispersion diagrams of the symmetric and antisymmetric modes are calculated. The operating frequency is properly chosen to be located at the edge of the dispersion diagram of the modes. In the linear case no propagation modes are excited at this frequency, however, in case of nonlinear medium when the amplitude of the injected signal is above some threshold value, the solitons are formed and they are propagating inside the coupled nonlinear PCWs. Near field distributions of the light pulse propagation inside the coupled nonlinear PCWs and the output powers of the registered signals are studied in a detail. The amplification coefficient is calculated at the various amplitudes of the launched signal. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as all-optical digital amplifier.
We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length show s a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.
We report enhanced optomechanical coupling by embedding a nano-mechanical beam resonator within an optical race-track resonator. Precise control of the mechanical resonator is achieved by clamping the beam between two low-loss photonic crystal wavegu ide couplers. The low insertion loss and the rigid mechanical support provided by the couplers yield both high mechanical and optical Q-factors for improved signal quality.
We demonstrate enhanced second harmonic generation in a gallium phosphide photonic crystal waveguide with a measured external conversion efficiency of 5$times10^{-7}$/W. Our results are promising for frequency conversion of on-chip integrated emitter s having broad spectra or large inhomogeneous broadening, as well as for frequency conversion of ultrashort pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا