ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear All Optical Digital Amplification of the Light Pulse in Weakly Coupled Photonic Crystal Waveguides

202   0   0.0 ( 0 )
 نشر من قبل Ramaz Khomeriki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All-optical amplification of the light pulse in a weakly coupled two nonlinear photonic crystal waveguides (PCWs) is proposed. We consider pillar-type PCWs, which consist of the periodically distributed circular rods made from a Kerr-type dielectric material. Dispersion diagrams of the symmetric and antisymmetric modes are calculated. The operating frequency is properly chosen to be located at the edge of the dispersion diagram of the modes. In the linear case no propagation modes are excited at this frequency, however, in case of nonlinear medium when the amplitude of the injected signal is above some threshold value, the solitons are formed and they are propagating inside the coupled nonlinear PCWs. Near field distributions of the light pulse propagation inside the coupled nonlinear PCWs and the output powers of the registered signals are studied in a detail. The amplification coefficient is calculated at the various amplitudes of the launched signal. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as all-optical digital amplifier.



قيم البحث

اقرأ أيضاً

We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free spa ce is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.
Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light c an be efficiently confined by random multiple scattering leading to Anderson localization. Here we investigate the effect of such disorder-induced cavities on the emission dynamics of single quantum dots embedded in disordered photonic-crystal waveguides. We present time-resolved measurements of both the total emission from Anderson-localized cavities and from single emitters that are coupled to the cavities. We observe both strongly inhibited and enhanced decay rates relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 2 in without any control on the quantum dot - cavity detuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum Purcell factor of 23.8 is recorded, which lies at the onset of the strong coupling regime. The presented data quantify the potential of naturally occurring Anderson-localized cavities for controlling and enhancing the light-matter interaction strength, which is of relevance not only for cavity quantum-electrodynamics experiments but potentially also for efficient energy harvesting and controllable random lasing.
Proposed all optical amplification scenario is based on the properties of light propagation in two coupled subwavelength metallic slab waveguides where for particular choice of waveguide parameters two propagating (symmetric) and non-propagating (ant isymmetric) eigenmodes coexist. For such a setup incident beams realize boundary conditions for forming a stationary state as a superposition of mentioned eigenmodes. It is shown both analytically and numerically that amplification rate in this completely linear mechanism diverges for small signal values.
167 - P. Colman , C. Husko (1 2010
We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.
We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs lase r pulse. The cavity is simultaneously irradiated with a non-resonant probe beam, giving rise to rich second-order scattering spectra reflecting nonlinear mixing of the different resonant and non-resonant components. In particular, we highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally-invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا