ﻻ يوجد ملخص باللغة العربية
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensation. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region.
We report generation of ultrashort UV pulses by soliton self-compression in kagome-style hollow-core photonic crystal fiber filled with ambient air. Pump pulses with energy 2.6 uJ and duration 54 fs at 400 nm were compressed temporally by a factor of
We present a technique that uses noisy broadband pulse bursts generated by modulational instability to probe nonlinear processes, including infrared-inactive Raman transitions, in molecular gases. These processes imprint correlations between differen
We report a series of experimental, analytical and numerical studies demonstrating strong circular dichroism in helically twisted hollow-core single-ring photonic crystal fiber (SR-PCF), formed by spinning the preform during fiber drawing. In the SR-
We demonstrate a route to supercontinuum generation in gas-filled hollow-core anti-resonant fibers through the creation of a broad vibrational Raman frequency comb followed by continuous broadening and merging of the comb lines through either rotatio
The resonance band in hollow-core photonic crystal fiber (HC-PCF), while leading to high-loss region in the fiber transmission spectrum, has been successfully used for generating phase-matched dispersive wave (DW). Here, we report that the spectral w