ترغب بنشر مسار تعليمي؟ اضغط هنا

Second harmonic generation in GaP photonic crystal waveguides

493   0   0.0 ( 0 )
 نشر من قبل Kelley Rivoire
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate enhanced second harmonic generation in a gallium phosphide photonic crystal waveguide with a measured external conversion efficiency of 5$times10^{-7}$/W. Our results are promising for frequency conversion of on-chip integrated emitters having broad spectra or large inhomogeneous broadening, as well as for frequency conversion of ultrashort pulses.



قيم البحث

اقرأ أيضاً

We investigate type I second harmonic generation in III-V semiconductor wire waveguides aligned with a crystallographic axis. In this direction, because of the single nonzero tensor element of III-V semiconductors, only frequency conversion by mixing with the longitudinal components of the optical fields is allowed. We experimentally study the impact of the propagation direction on the conversion efficiency and confirm the role played by the longitudinal components through the excitation of an antisymmetric second harmonic higher order mode.
We theoretically investigate second harmonic generation in extremely narrow, sub-wavelength semiconductor and dielectric waveguides. We discuss a novel guiding mechanism characterized by the inhibition of diffraction and the suppression of cut-off li mits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.
We experimentally and theoretically investigate the second order nonlinear optical response of metallo-dielectric multilayer structures composed of Ag and Ta2O5 layers, deposited by magnetron sputtering. Second harmonic generation measurements were p erformed in reflection mode as a function of incidence angle, using femtosecond pulses originating from a Ti:Sapphire laser system tuned at 800 nm. The dependence of the generated signal was investigated as a function of pump intensity and polarization state. Our experimental results show that the conversion efficiency from a periodic metallo-dielectric sample may be enhanced by at least a factor of 30 with respect to the conversion efficiency from a single metal layer, thanks in part to the increased number of active surfaces, pump field localization and penetration inside the metal layers. The conversion efficiency maximum shifts from 70 degrees for the single silver layer down to approximately 55 degrees for the stack. The experimental results are found to be in good agreement with calculations based on coupled Maxwell-Drude oscillators under the action of a nonlinear Lorentz force term.
Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten dis elenide using a silicon photonic crystal cavity. By pumping the device with the ultrafast laser pulses near the cavity mode at the telecommunication wavelength, we observe a near visible SHG with a narrow linewidth and near unity linear polarization, originated from the coupling of the pump photon to the cavity mode. The observed SHG is enhanced by factor of ~200 compared to a bare monolayer on silicon. Our results imply the efficacy of cavity integrated monolayer materials for nonlinear optics and the potential of building a silicon-compatible second-order nonlinear integrated photonic platform.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume a nd doubly resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly resonant nanocavities with low mode volume and large quality factor by localized defects in a photonic crystal structure. We build on this approach by applying an evolutionary optimisation algorithm in connection with Maxwell equations solvers, showing that the proposed design recipe can be applied to any material platform. We explicitly calculate the second-harmonic generation efficiency for doubly resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, targeting a fundamental harmonic at telecom wavelengths, and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realisation of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا