ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Possibility of Super-luminal Propagation in a Gravitational Background

44   0   0.0 ( 0 )
 نشر من قبل Ratindranath Akhoury
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that superluminal propagation in a gravitational field discovered by Drummond and Hathrell in the lowest order of perturbation theory remains intact in higher orders. The criticism of this result based on an exact calculation of the one loop correction to the photon polarization operator in the Penrose plane wave approximation is not tenable. The statement that quantum causality is automatically imposed by classical causality is possibly invalid due to the infrared nature of the same triangle diagram which also contributes to the quantum trace anomaly.

قيم البحث

اقرأ أيضاً

54 - Carlos Pinheiro 1996
The existence of an electromagnectic field with parallel electric and magnetic components is readdressed in the presence of a gravitational field. A non-parallel solution is shown to exist. Next, we analyse the possibility of finding stationary gravi tational waves in de nature. Finaly, We construct a D=4 effective quantum gravity model. Tree-level unitarity is verified.
We investigate the behaviour of tensor fluctuations in Loop Quantum Cosmology, focusing on a class of scaling solutions which admit a near scale-invariant scalar field power spectrum. We obtain the spectral index of the gravitational field perturbati ons, and find a strong blue tilt in the power spectrum with $n_t approx 2$. The amplitude of tensor modes are, therefore, suppressed by many orders of magnitude on large scales compared to those predicted by the standard inflationary scenario where $n_t approx 0$.
The Laser Interferometer Gravitational Wave Observatory (LIGO) has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used t o search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Omega_0<8.4e-4 in the 69-156 Hz band is ~10^5 times lower than the previous result in this frequency range.
We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four spacetime dimensions. This constrains possibl e weakly coupled ultraviolet extensions of massive gravity, ruling out gravitational analogues of the Higgs mechanism based on particles with spins less than two. Any tree-level ultraviolet extension that is Lorentz invariant and unitary must involve additional massive particles with spins greater than or equal to two, as in Kaluza-Klein theories and string theory.
Dual gravitational charges have been recently computed from the Holst term in tetrad variables using covariant phase space methods. We highlight that they originate from an exact 3-form in the tetrad symplectic potential that has no analogue in metri c variables. Hence there exists a choice of the tetrad symplectic potential that sets the dual charges to zero. This observation relies on the ambiguity of the covariant phase space methods. To shed more light on the dual contributions, we use the Kosmann variation to compute (quasi-local) Hamiltonian charges for arbitrary diffeomorphisms. We obtain a formula that illustrates comprehensively why the dual contribution to the Hamiltonian charges: (i) vanishes for exact isometries and asymptotic symmetries at spatial infinity; (ii) persists for asymptotic symmetries at future null infinity, in addition to the usual BMS contribution. Finally, we point out that dual gravitational charges can be equally derived using the Barnich-Brandt prescription based on cohomological methods, and that the same considerations on asymptotic symmetries apply.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا