ترغب بنشر مسار تعليمي؟ اضغط هنا

The gravitational wave background from super-inflation in Loop Quantum Cosmology

261   0   0.0 ( 0 )
 نشر من قبل David Mulryne
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the behaviour of tensor fluctuations in Loop Quantum Cosmology, focusing on a class of scaling solutions which admit a near scale-invariant scalar field power spectrum. We obtain the spectral index of the gravitational field perturbations, and find a strong blue tilt in the power spectrum with $n_t approx 2$. The amplitude of tensor modes are, therefore, suppressed by many orders of magnitude on large scales compared to those predicted by the standard inflationary scenario where $n_t approx 0$.



قيم البحث

اقرأ أيضاً

By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General Relativity one. We investigate such modifications and explore the constraints imposed by the Cosmic Microwave Background (CMB) Planck Collaboration data on the Warm Inflation (WI) scenario in the LQC context. We obtain useful relations between the dissipative parameter of WI and the bounce scale parameter of LQC. We also find that the number of required e-folds of expansion from the bounce instant till the moment the observable scales crossed the Hubble radius during inflation can be smaller in WI than in CI. In particular, we find that this depends on how large is the dissipation in WI, with the amount of required e-folds decreasing with the increasing of the dissipation value. Furthermore, by performing a Monte Carlo Markov Chain analysis for the considered WI models, we find good agreement of the model with the data. This shows that the WI models studied here can explain the current observations also in the context of LQC.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to form black holes and, at the same time, generate a stochastic background of gravitational waves coming from second order anisotropic stresses in matter. We study the amplitude and shape of this background for several phenomenological models of the curvature power spectrum that can be embedded in waterfall hybrid inflation, axion, domain wall, and boosts of PBH formation at the QCD transition. For a broad peak or a nearly scale invariant spectrum, this stochastic background is generically enhanced by about one order of magnitude, compared to a sharp feature. As a result, stellar-mass PBH from Gaussian fluctuations with a wide mass distribution are already in strong tension with the limits from Pulsar Timing Arrays, if they constitute a non negligible fraction of the Dark Matter. But this result is mitigated by the uncertainties on the curvature threshold leading to PBH formation. LISA will have the sensitivity to detect or rule out light PBH down to $10^{-14} M_{odot}$. Upcoming runs of LIGO/Virgo and future interferometers such as the Einstein Telescope will increase the frequency lever arm to constrain PBH from the QCD transition. Ultimately, the future SKA Pulsar Timing Arrays could probe the existence of even a single stellar-mass PBH in our Observable Universe.
Gravitational waves (GW) produced in the early Universe contribute to the number of relativistic degrees of freedom, $N_{rm eff}$, during Big Bang Nucleosynthesis (BBN). By using the constraints on $N_{rm eff}$, we present a new bound on how much the Universe could have expanded between horizon exit of the largest observable scales today and the end of inflation. We discuss the implications on inflationary models and show how the new constraints affect model selection. We also discuss the sensitivities of the current and planned GW observatories such as LIGO and LISA, and show that the constraints they could impose are always less stringent than the BBN bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا