ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Limits on a Stochastic Background of Gravitational Waves

64   0   0.0 ( 0 )
 نشر من قبل Joseph Romano
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Laser Interferometer Gravitational Wave Observatory (LIGO) has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Omega_0<8.4e-4 in the 69-156 Hz band is ~10^5 times lower than the previous result in this frequency range.

قيم البحث

اقرأ أيضاً

62 - Pierre G. Auclair 2020
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than $H_0(Gamma Gmu)^{-1}$ where $Gamma$ is of order $50$ and $H_0$ is the Hubble constant. We propose a complete classification of the gravitational wave power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of gravitational wave power spectrum can be considered giving very different predictions for the SBGW.
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of Delta theta ~ 10 mu as would yield a sensitivity level of Omega_gw ~ (Delta theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
110 - Yi-Fu Cai , Chao Chen , Xi Tong 2019
As potential candidates of dark matter, primordial black holes (PBHs) are within the core scopes of various astronomical observations. In light of the explosive development of gravitational wave (GW) and radio astronomy, we thoroughly analyze a stoch astic background of cosmological GWs, induced by over large primordial density perturbations, with several spikes that was inspired by the sound speed resonance effect and can predict a particular pattern on the mass spectrum of PBHs. With a specific mechanicsm for PBHs formation, we for the first time perform the study of such induced GWs that originate from both the inflationary era and the radiation-dominated phase. We report that, besides the traditional process of generating GWs during the radiation-dominated phase, the contribution of the induced GWs in the sub-Hubble regime during inflation can become significant at critical frequency band because of a narrow resonance effect. All contributions sum together to yield a specific profile of the energy spectrum of GWs that can be of observable interest in forthcoming astronomical experiments. Our study shed light on the possible joint probe of PBHs via various observational windows of multi-messenger astronomy, including the search for electromagnetic effects with astronomical telescopes and the stochastic background of relic GWs with GW instruments.
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be gr eater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
123 - Wenlin Tang , Peng Xu , Songjie Hu 2017
The Doppler tracking data of the Change 3 lunar mission is used to constrain the stochastic background of gravitational wave in cosmology within the 1 mHz to 0.05 Hz frequency band. Our result improves on the upper bound on the energy density of the stochastic background of gravitational wave in the 0.02 Hz to 0.05 Hz band obtained by the Apollo missions, with the improvement reaching almost one order of magnitude at around 0.05 Hz. Detailed noise analysis of the Doppler tracking data is also presented, with the prospect that these noise sources will be mitigated in future Chinese deep space missions. A feasibility study is also undertaken to understand the scientific capability of the Change 4 mission, due to be launched in 2018, in relation to the stochastic gravitational wave background around 0.01 Hz. The study indicates that the upper bound on the energy density may be further improved by another order of magnitude from the Change 3 mission, which will fill the gap in the frequency band from 0.02 Hz to 0.1 Hz in the foreseeable future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا