ﻻ يوجد ملخص باللغة العربية
We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four spacetime dimensions. This constrains possible weakly coupled ultraviolet extensions of massive gravity, ruling out gravitational analogues of the Higgs mechanism based on particles with spins less than two. Any tree-level ultraviolet extension that is Lorentz invariant and unitary must involve additional massive particles with spins greater than or equal to two, as in Kaluza-Klein theories and string theory.
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particul
We analyse the boundary structure of General Relativity in the coframe formalism in the case of a lightlike boundary, i.e., when the restriction of the induced Lorentzian metric to the boundary is degenerate. We describe the associated reduced phase
In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distribu
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In part
Dual gravitational charges have been recently computed from the Holst term in tetrad variables using covariant phase space methods. We highlight that they originate from an exact 3-form in the tetrad symplectic potential that has no analogue in metri