ﻻ يوجد ملخص باللغة العربية
Active regions often host large-scale gas flows in the chromosphere presumably directed along curved magnetic field lines. Spectropolarimetric observations of these flows are critical to understanding the nature and evolution of their anchoring magnetic structure. We discuss recent work with the Facility Infrared Spectropolarimeter (FIRS) located at the Dunn Solar Telescope in New Mexico to achieve high resolution imaging-spectropolarimetry of the Fe I lines at 630 nm, the Si I line at 1082.7 nm, and the He I triplet at 1083 nm. We present maps of the photospheric and chromospheric magnetic field vector above a sunspot as well as discuss characteristics of surrounding chromospheric flow structures.
Context. A proper estimate of the chromospheric magnetic fields is believed to improve modelling of both active region and coronal mass ejection evolution. Aims. We investigate the similarity between the chromospheric magnetic field inferred from obs
In this study we combine the multiwavelength ultraviolet -- optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmosp
Coronal mass ejections (CMEs) are powered by magnetic energy stored in electric currents in coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from confining ov
In the present work, we study the periodicities of oscillations in dark fine structures using observations of a network and a semi-active region close to the solar disk center. We simultaneously obtained spatially high resolution time series of white
Aims: To study the heating of solar chromospheric magnetic and nonmagnetic regions by acoustic and magnetoacoustic waves, the deposited acoustic-energy flux derived from observations of strong chromospheric lines is compared with the total integrated