ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity Induced in Iron Telluride Films by Low Temperature Oxygen Incorporation

101   0   0.0 ( 0 )
 نشر من قبل Yuefeng Nie
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report superconductivity induced in films of the non-superconducting, antiferromagnetic parent material FeTe by low temperature oxygen incorporation in a reversible manner. X-ray absorption shows that oxygen doping changes the nominal Fe valence state from 2+ in the non-superconducting state to mainly 3+ in the superconducting state. Thus superconductivity in O doped FeTe occurs in a quite different charge and strain state than the more common FeTe$_{1-x}$Se$_x$. This work also suggests a convenient path for conducting doping experiments in-situ with many measurement techniques.

قيم البحث

اقرأ أيضاً

We report on the local electronic structure of oxygen incorporated FeTe and FeSe films and how this relates to superconductivity observed in these films. In the case of FeTe, intially grown films are measured to be non-superconducting, but become sup erconducting following oxygen incorporation. In FeSe the opposite happens, initially grown films are measured to be superconducting, but experience a quenching of superconductivity following oxygen incorporation. Total Fluorescence Yield (TFY) X-ray absorption experiments show that oxygen incorporation changes the initial Fe valence state in both the initially grown FeTe and FeSe films to mainly Fe3+ in the oxygen incorporated films. In contrast we observe that while Te moves to a mixed Te0/Te4+ valence state, the Se always remains Se0. This work highlights how different responses of the electronic structure by the respective chalcogenides to oxidation could be related to the mechanisms which are inducing superconductivity in FeTe and quenching superconductivity in FeSe.
88 - R K Singh , Y Shen , R Gandikota 2007
The amount of oxygen incorporated into MgB2 thin films upon exposure to atmospheric gasses is found to depend strongly on the materials stoichiometry. Rutherford backscattering spectroscopy was used to monitor changes in oxygen incorporation resultin g from exposure to: (a) ambient atmosphere, (b) humid atmospheres, (c) anneals in air and (d) anneals in oxygen. The study investigated thin-film samples with compositions that were systematically varied from Mg0.9B2 to Mg1.1B2. A significant surface oxygen contamination was observed in all of these films. The oxygen content in the bulk of the film, on the other hand, increased significantly only in Mg rich films and in films exposed to humid atmospheres.
133 - G. Wu , H. Chen , Y. L. Xie 2008
We synthesized Sr-doped $La_{0.85}Sr_{0.15}OFeAs$ sample with single phase, and systematically studied the effect of oxygen deficiency in the Sr-doped LaOFeAs system. It is found that substitution of Sr for La indeed induces the hole carrier evidence d by positive thermoelectric power (TEP), but no bulk superconductivity is observed. The superconductivity can be realized by annealing the as-grown sample in vacuum to produce the oxygen deficiency. With increasing the oxygen deficiency, the superconducting transition temperature ($T_c$) increases and maximum $T_c$ reaches about 26 K the same as that in La(O,F)FeAs. TEP dramatically changes from positive to negative in the nonsuperconducting as-grown sample to the superconducting samples with oxygen deficiency. While $R_H$ is always negative for all samples (even for Sr-doped as grown sample). It suggests that the $La_{0.85}Sr_{0.15}O_{1-delta}FeAs$ is still electron-type superconductor.
Chemical doping has recently become a very important strategy to induce superconductivity especially in complex compounds. Distinguished examples include Ba-doped La$_2$CuO$_4$ (the first high temperature superconductor), K-doped BaBiO$_3$, K-doped C $_{60}$ and Na$_{x}$CoO$_{2}cdot y$H$_{2}$O. The most recent example is F-doped LaFeAsO, which leads to a new class of high temperature superconductors. One notes that all the above dopants are non-magnetic, because magnetic atoms generally break superconducting Cooper pairs. In addition, the doping site was out of the (super)conducting structural unit (layer or framework). Here we report that superconductivity was realized by doping magnetic element cobalt into the (super)conducting-active Fe$_2$As$_2$ layers in LaFe$_{1-x}$Co$_{x}$AsO. At surprisingly small Co-doping level of $x$=0.025, the antiferromagnetic spin-density-wave transition in the parent compound is completely suppressed, and superconductivity with $T_csim $ 10 K emerges. With increasing Co content, $T_c$ shows a maximum of 13 K at $xsim 0.075$, and then drops to below 2 K at $x$=0.15. This result suggests essential differences between previous cuprate superconductor and the present iron-based arsenide one.
Oxygen was systematically incorporated in MBE grown MgB2 films using in-situ post-growth anneals in an oxygen environment. Connectivity analysis in combination with measurements of the critical temperature and resistivity indicate that oxygen is dist ributed both within and between the grains. High values of critical current densities in field (~4x10^5 A/cm^2 at 8 T and 4.2 K), extrabolated critical fields (>45 T) and slopes of critical field versus temperature (1.4 T/K) are observed. Our results suggest that low growth temperatures (300oC) and oxygen doping (>0.65%) can produce MgB2 with high Jc values in field and Hc2 for high-field magnet applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا