ﻻ يوجد ملخص باللغة العربية
We report on the local electronic structure of oxygen incorporated FeTe and FeSe films and how this relates to superconductivity observed in these films. In the case of FeTe, intially grown films are measured to be non-superconducting, but become superconducting following oxygen incorporation. In FeSe the opposite happens, initially grown films are measured to be superconducting, but experience a quenching of superconductivity following oxygen incorporation. Total Fluorescence Yield (TFY) X-ray absorption experiments show that oxygen incorporation changes the initial Fe valence state in both the initially grown FeTe and FeSe films to mainly Fe3+ in the oxygen incorporated films. In contrast we observe that while Te moves to a mixed Te0/Te4+ valence state, the Se always remains Se0. This work highlights how different responses of the electronic structure by the respective chalcogenides to oxidation could be related to the mechanisms which are inducing superconductivity in FeTe and quenching superconductivity in FeSe.
We report superconductivity induced in films of the non-superconducting, antiferromagnetic parent material FeTe by low temperature oxygen incorporation in a reversible manner. X-ray absorption shows that oxygen doping changes the nominal Fe valence s
Nanometer-sized particular structures are generated on the surfaces of FeSe epitaxial films directly after exposure to air; this phenomenon was studied in the current work because these structures are an obstacle to field-induced superconductivity in
We have carried out a systematic study of the PbO-type compound FeSe_{1-x}Te_x (x = 0~1), where Te substitution effect on superconductivity is investigated. It is found that superconducting transition temperature reaches a maximum of Tc=15.2K at abou
In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s+- order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide
The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For