ﻻ يوجد ملخص باللغة العربية
We extended a previous qualitative study of the intermittent behaviour of a chaotical nucleonic system, by adding a few quantitative analyses: of the configuration and kinetic energy spaces, power spectra, Shannon entropies, and Lyapunov exponents. The system is regarded as a classical nuclear billiard with an oscillating surface of a 2D Woods-Saxon potential well. For the monopole and dipole vibrational modes we bring new arguments in favour of the idea that the degree of chaoticity increases when shifting the oscillation frequency from the adiabatic to the resonance stage of the interaction. The order-chaos-order-chaos sequence is also thoroughly investigated and we find that, for the monopole deformation case, an intermittency pattern is again found. Moreover, coupling between one-nucleon and collective degrees of freedom is proved to be essential in obtaining chaotic states.
High resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up to an excitation Energy of Ex= 6.20 MeV in 208Pb. We present a thorough study of the fluctuation properties in the energy
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robu
We investigate circuit complexity to characterize chaos in multiparticle quantum systems. In the process, we take a stride to analyze open quantum systems by using complexity. We propose a new diagnostic of quantum chaos from complexity based on the
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical si