ﻻ يوجد ملخص باللغة العربية
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical side into a pronounced regular dynamics on the deformed side. Both order and chaos persist in the coexistence region and their interplay reflects the Landau potential landscape and the impact of collective rotations.
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robu
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
First order quantum phase transition (QPT) between spherical and axially deformed nuclei shows coexisting, but well-separated regions of regular and chaotic dynamics. We employ a Hamiltonian of the Arima-Iachello Interacting Boson Model (IBM) with an
A simple, empirical signature of a first order phase transition in atomic nuclei is presented, the ratio of the energy of the 6+ level of the ground state band to the energy of the first excited 0+ state. This ratio provides an effective order parame
We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between s