ﻻ يوجد ملخص باللغة العربية
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robustly regular dynamics confined to the deformed region and well separated from a chaotic dynamics ascribed to the spherical region. A quantum analysis discloses regular bands of states in the deformed region, which persist to energies well above the phase-separating barrier, in the face of a complicated environment. The impact of kinetic collective rotational terms on this intricate interplay of order and chaos is investigated.
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical si
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between s
First order quantum phase transition (QPT) between spherical and axially deformed nuclei shows coexisting, but well-separated regions of regular and chaotic dynamics. We employ a Hamiltonian of the Arima-Iachello Interacting Boson Model (IBM) with an
The search for a first-order phase transition in strongly interacting matter is one of the major objectives in the exploration of the phase diagram of Quantum Chromodynamics (QCD). In the present work we investigate dilepton radiation from the hot an