ﻻ يوجد ملخص باللغة العربية
High resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up to an excitation Energy of Ex= 6.20 MeV in 208Pb. We present a thorough study of the fluctuation properties in the energy spectra of the unprecedented set of nuclear bound states. In a first approach we grouped states with the same spin and parity into 14 subspectra, analyzed standard statistical measures for short- and long-range correlations and then computed their ensemble average. Their comparison with a random matrix ensemble which interpolates between Poisson statistics expected for regular systems and the Gaussian Orthogonal Ensemble (GOE) predicted for chaotic systems shows that the data are well described by the GOE. In a second approach, following an idea of Rosenzweig and Porter we considered the complete spectrum composed of the independent subspectra. We analyzed their fluctuation properties using the method of Bayesian inference involving a quantitative measure, called the chaoticity parameter f, which also interpolates between Poisson (f=0) and GOE statistics (f=1). It turns out to be f~0.9. This is so far the closest agreement with GOE observed in spectra of bound states in a nucleus. The same analysis has also been performed with spectra computed on the basis of shell model calculations with different interactions (SDI, KB, M3Y). While the simple SDI exhibits features typical for nuclear many-body systems with regular dynamics, the other, more realistic interactions yield chaoticity parameters f close to the experimental values.
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through
Many properties of the atomic nucleus, such as vibrations, rotations and incompressibility, can be interpreted as due to a two component quantum liquid of protons and neutrons. Electron scattering measurements on stable nuclei demonstrate that their
Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an i
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic
Large scale shell model calculations have been performed to study the excitation spectra of 132Sn and its nearest neighbours with a new cross-shell interaction constructed from two widely used interactions, sn100pn and CWG, of this mass region. A few