ﻻ يوجد ملخص باللغة العربية
Magnetic barriers in graphene are not easily tunable. However, introducing both electric and magnetic fields, provides tunable and far more controllable electronic states in graphene. Here we study such systems. A one-dimensional channel can be formed in graphene using perpendicular electric and magnetic fields. This channel (quantum wire) supports localized electron-hole states, with parameters that can be controlled by an electric field. Such quantum wire offers peculiar conducting properties, like unidirectional conductivity and robustness to disorder. Two separate quantum wires comprise a waveguide with two types of eigenmodes: one type is similar to traditional waveguides, the other type is formed by coupled surface waves propagating along the boundaries of the waveguide.
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipu
Magnetic oscillations of Dirac surface states of topological insulators are expected to be associated with the formation of Landau levels or the Aharonov-Bohm effect. We instead study the conductance of Dirac surface states subjected to an in-plane m
We address the increase of electron drift velocity that arises in semiconductor superlattices (SLs) subjected to constant electric and magnetic fields. It occurs if the magnetic field possesses nonzero components both along and perpendicular to the S
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additio
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge she