ﻻ يوجد ملخص باللغة العربية
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipulated by varying the width and position of domain wall (DW) within two normally stacked graphene. All the layer-dependent atomic interactions are taken into consideration under external fields. The modulation of stacking configuration gives rise to significant effects of zone folding on energy subbands, subenvelope wave functions, density of states, and optical absorption spectra. This study clearly illustrates the diverse 1D phenomena in the energy band structure and absorption spectra; the DW- and $V_z$-created dramatic variations are comprehensively explored under accurate calculations and delicate analysis. Concise physical pictures are proposed to give further insight into the quasi-1D behaviors.
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge she
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel
Stability and electronic properties of atomic layers of GaN are investigated in the framework of the van der Waals-density functional theory. We find that the ground state of the layered GaN is a planar graphene-like configuration rather than a buckl
The generalized tight-binding model is developed to investigate the magneto-electronic properties in twisted bilayer graphene system. All the interlayer and intralayer atomic interactions are included in the Moire superlattice. The twisted bilayer gr
The electronic and optical response of Bernal stacked bilayer graphene with geometry modulation and gate voltage are studied. The broken symmetry in sublattices, one dimensional periodicity perpendicular to the domain wall and out-of-plane axis intro