ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate tunable quantum transport in double layer graphene

211   0   0.0 ( 0 )
 نشر من قبل Kostyantyn Kechedzhi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additional layer is two-fold: it provides screening of the long-range potential of charged defects in the system, and screens out Coulomb interactions between charge carriers. We find that the efficiency of defect charge screening is strongly dependent on the concentration and location of defects within the DLG. In particular, only a moderate suppression of electron-hole puddles around the Dirac point induced by the high concentration of remote impurities in the silicon oxide substrate could be achieved. A stronger effect is found on the elastic relaxation rate due to charged defects resulting in mobility strongly dependent on the electron denisty in the additional layer of DLG. We find that the quantum interference correction to the resistivity of graphene is also strongly affected by screening in DLG. In particular, the dephasing rate is strongly suppressed by the additional screening that supresses the amplitude of electron-electron interaction and reduces the diffusion time that electrons spend in proximity of each other. The latter effect combined with screening of elastic relaxation rates results in a peculiar gate tunable weak-localization magnetoresistance and quantum correction to resistivity. We propose suitable experiments to test our theory and discuss the possible relevance of our results to exisiting data.



قيم البحث

اقرأ أيضاً

Van der Waals (vdW) assembly of two-dimensional materials has been long recognized as a powerful tool to create unique systems with properties that cannot be found in natural compounds. However, among the variety of vdW heterostructures and their var ious properties, only a few have revealed metallic and ferroelectric behaviour signatures. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride, which demonstrating high room temperature mobility of the order of 10 m$^2$V$^{-1}$s$^{-1}$ and exhibits robust ambipolar switching in response to the external electric field. The observed hysteresis is tunable, reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a route for developing novel phase-changing devices.
Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchan ge interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n>10^12 cm-2 or T>5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering.
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron-nitride (hBN) dielectr ic. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.
Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, tho ugh the two valley pseudospin states transform to each other under spatial inversion. The breaking of inversion symmetry induces various valley-contrasted physical properties; for instance, valley-dependent topological transport is of both scientific and technological interests. Bilayer graphene (BLG) is a unique system whose intrinsic inversion symmetry can be controllably broken by a perpendicular electric field, offering a rare possibility for continuously tunable valley-topological transport. Here, we used a perpendicular gate electric field to break the inversion symmetry in BLG, and a giant nonlocal response was observed as a result of the topological transport of the valley pseudospin. We further showed that the valley transport is fully tunable by external gates, and that the nonlocal signal persists up to room temperature and over long distances. These observations challenge contemporary understanding of topological transport in a gapped system, and the robust topological transport may lead to future valleytronic applications.
Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnet ic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate SOC and intrinsic spin-splitting in atomically thin InSe, which can be modified over an unprecedentedly large range. From quantum oscillations, we establish that the SOC parameter alpha is thickness-dependent; it can be continuously modulated over a wide range by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Surprisingly, alpha could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا