ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanism of the Resonant Enhancement of Electron Drift in Nanometre Semiconductor Superlattices Subjected to Electric and Inclined Magnetic Fields

94   0   0.0 ( 0 )
 نشر من قبل Stanislav Soskin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the increase of electron drift velocity that arises in semiconductor superlattices (SLs) subjected to constant electric and magnetic fields. It occurs if the magnetic field possesses nonzero components both along and perpendicular to the SL axis and the Bloch oscillations along the SL axis become resonant with cyclotron rotation in the transverse plane. It is a phenomenon of considerable interest, so that it is important to understand the underlying mechanism. In an earlier Letter (Phys. Rev. Lett. 114, 166802 (2015)) we showed that, contrary to a general belief that drift enhancement occurs through chaotic diffusion along a stochastic web (SW) within semiclassical collisionless dynamics, the phenomenon actually arises through a non-chaotic mechanism. In fact, any chaos that occurs tends to reduce the drift. We now provide fuller details, elucidating the mechanism in physical terms, and extending the investigation. In particular, we: (i) demonstrate that pronounced drift enhancement can still occur even in the complete absence of an SW; (ii) show that, where an SW does exist and its characteristic slow dynamics comes into play, it suppresses the drift enhancement even before strong chaos is manifested; (iii) generalize our theory for non-small temperature, showing that heating does not affect the enhancement mechanism and accounting for some earlier numerical observations; (iv) demonstrate that certain analytic results reported previously are incorrect; (v) provide an extended critical review of the subject and closely related issues; and (vi) discuss some challenging problems for the future.



قيم البحث

اقرأ أيضاً

Magnetic oscillations of Dirac surface states of topological insulators are expected to be associated with the formation of Landau levels or the Aharonov-Bohm effect. We instead study the conductance of Dirac surface states subjected to an in-plane m agnetic field in presence of a barrier potential. Strikingly, we find that, in the case of large barrier potentials, the surface states exhibit pronounced oscillations in the conductance when varying the magnetic field, in the textit{absence} of Landau levels or the Aharonov-Bohm effect. These novel magnetic oscillations are attributed to the emergence of textit{super-resonant regimes} by tuning the magnetic field, in which almost all propagating electrons cross the barrier with perfect transmission. In the case of small and moderate barrier potentials, we also identify a positive magnetoconductance which is due to the increase of the Fermi surface by tilting the surface Dirac cone. Moreover, we show that for weak magnetic fields, the conductance displays a shifted sinusoidal dependence on the field direction with period $pi$ and phase shift determined by the tilting direction with respect to the field direction. Our predictions can be applied to many topological insulators, such as HgTe and Bi$_{2}$Se$_{3}$, and provide important insights into exploring and understanding exotic magnetotransport properties of topological surface states.
Magnetic barriers in graphene are not easily tunable. However, introducing both electric and magnetic fields, provides tunable and far more controllable electronic states in graphene. Here we study such systems. A one-dimensional channel can be forme d in graphene using perpendicular electric and magnetic fields. This channel (quantum wire) supports localized electron-hole states, with parameters that can be controlled by an electric field. Such quantum wire offers peculiar conducting properties, like unidirectional conductivity and robustness to disorder. Two separate quantum wires comprise a waveguide with two types of eigenmodes: one type is similar to traditional waveguides, the other type is formed by coupled surface waves propagating along the boundaries of the waveguide.
We examine phenomenon of electromagnetic transparency in semiconductor superlattices (having various miniband dispersion laws) in the presence of multi-frequency periodic and non-periodic electric fields. Effects of induced transparency and spontaneo us generation of static fields are discussed. We paid a special attention on a self-induced electromagnetic transparency and its correlation to dynamic electron localization. Processes and mechanisms of the transparency formation, collapse, and stabilization in the presence of external fields are studied. In particular, we present the numerical results of the time evolution of the superlattice current in an external biharmonic field showing main channels of transparency collapse and its partial stabilization in the case of low electron density superlattices.
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation whereas other inelas tic collisions are described by a modified BGK (Bhatnaghar-Gross-Krook) model. The hyperbolic limit is such that the collision frequencies are of the same order as the Bloch frequencies due to the electric field and the corresponding terms in the kinetic equation are dominant. In this limit, spatially nonlocal drift-diffusion balance equations for the miniband populations and the electric field are derived by means of the Chapman-Enskog perturbation technique. For a lateral superlattice with spin-orbit interaction, electrons with spin up or down have different energies and their corresponding drift-diffusion equations can be used to calculate spin-polarized currents and electron spin polarization. Numerical solutions show stable self-sustained oscillations of the current and the spin polarization through a voltage biased lateral superlattice thereby providing an example of superlattice spin oscillator.
74 - V. Bellani , M. Amado , E. Diez 2007
We report the experimental study of resonant Rayleigh scattering in GaAs-AlGaAs superlattices with ordered and intentionally disordered potential profiles (correlated and uncorrelated) in the growth direction z. We show that the intentional disorder along z modify markedly the energy dispersion of the dephasing rates of the excitons. The application of an external magnetic field in the same direction allows the continuous tuning of the in plane exciton localization and to study the interplay between the in plane and vertical disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا