ﻻ يوجد ملخص باللغة العربية
We discuss connecting tables with zero-one entries by a subset of a Markov basis. In this paper, as a Markov basis we consider the Graver basis, which corresponds to the unique minimal Markov basis for the Lawrence lifting of the original configuration. Since the Graver basis tends to be large, it is of interest to clarify conditions such that a subset of the Graver basis, in particular a minimal Markov basis itself, connects tables with zero-one entries. We give some theoretical results on the connectivity of tables with zero-one entries. We also study some common models, where a minimal Markov basis for tables without the zero-one restriction does not connect tables with zero-one entries.
Markov basis for statistical model of contingency tables gives a useful tool for performing the conditional test of the model via Markov chain Monte Carlo method. In this paper we derive explicit forms of Markov bases for change point models and bloc
We derive a Markov basis consisting of moves of degree at most three for two-state toric homogeneous Markov chain model of arbitrary length without parameters for initial states. Our basis consists of moves of degree three and degree one, which alter
We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time $T$, the size of the design matrix is $6 times 3cdot 2^{T-1}$ and the convex hull of its columns is the model polytope. We study the
The naive importance sampling estimator, based on samples from a single importance density, can be numerically unstable. Instead, we consider generalized importance sampling estimators where samples from more than one probability distribution are com
In this work we define log-linear models to compare several square contingency tables under the quasi-independence or the quasi-symmetry model, and the relevant Markov bases are theoretically characterized. Through Markov bases, an exact test to eval