ﻻ يوجد ملخص باللغة العربية
Markov basis for statistical model of contingency tables gives a useful tool for performing the conditional test of the model via Markov chain Monte Carlo method. In this paper we derive explicit forms of Markov bases for change point models and block diagonal effect models, which are typical block-wise effect models of two-way contingency tables, and perform conditional tests with some real data sets.
To evaluate a fitting of a statistical model to given data, calculating a conditional $p$ value by a Markov chain Monte Carlo method is one of the effective approaches. For this purpose, a Markov basis plays an important role because it guarantees th
For statistical analysis of multiway contingency tables we propose modeling interaction terms in each maximal compact component of a hierarchical model. By this approach we can search for parsimonious models with smaller degrees of freedom than the u
It has been well-known that for two-way contingency tables with fixed row sums and column sums the set of square-free moves of degree two forms a Markov basis. However when we impose an additional constraint that the sum of a subtable is also fixed,
We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time $T$, the size of the design matrix is $6 times 3cdot 2^{T-1}$ and the convex hull of its columns is the model polytope. We study the
We discuss connecting tables with zero-one entries by a subset of a Markov basis. In this paper, as a Markov basis we consider the Graver basis, which corresponds to the unique minimal Markov basis for the Lawrence lifting of the original configurati