ﻻ يوجد ملخص باللغة العربية
The naive importance sampling estimator, based on samples from a single importance density, can be numerically unstable. Instead, we consider generalized importance sampling estimators where samples from more than one probability distribution are combined. We study this problem in the Markov chain Monte Carlo context, where independent samples are replaced with Markov chain samples. If the chains converge to their respective target distributions at a polynomial rate, then under two finite moment conditions, we show a central limit theorem holds for the generalized estimators. Further, we develop an easy to implement method to calculate valid asymptotic standard errors based on batch means. We also provide a batch means estimator for calculating asymptotically valid standard errors of Geyer(1994) reverse logistic estimator. We illustrate the method using a Bayesian variable selection procedure in linear regression. In particular, the generalized importance sampling estimator is used to perform empirical Bayes variable selection and the batch means estimator is used to obtain standard errors in a high-dimensional setting where current methods are not applicable.
This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc
In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a p
Following the seminal approach by Talagrand, the concept of Rademacher complexity for independent sequences of random variables is extended to Markov chains. The proposed notion of block Rademacher complexity (of a class of functions) follows from re
In this paper, we have developed a new class of sampling schemes for estimating parameters of binomial and Poisson distributions. Without any information of the unknown parameters, our sampling schemes rigorously guarantee prescribed levels of precision and confidence.
We consider batch size selection for a general class of multivariate batch means variance estimators, which are computationally viable for high-dimensional Markov chain Monte Carlo simulations. We derive the asymptotic mean squared error for this cla