ﻻ يوجد ملخص باللغة العربية
We consider a Kondo spin that is coupled antiferromagnetically to a large chaotic quantum dot. Such a dot is described by the so-called universal Hamiltonian and its electrons are interacting via a ferromagnetic exchange interaction. We derive an effective Hamiltonian in the limit of strong Kondo coupling, where the screened Kondo spin effectively removes one electron from the dot. We find that the exchange coupling constant in this reduced dot (with one less electron) is renormalized and that new interaction terms appear beyond the conventional terms of the strong-coupling limit. The eigenenergies of this effective Hamiltonian are found to be in excellent agreement with exact numerical results of the original model in the limit of strong Kondo coupling.
Recently, A. Jerez, P. Vitushinsky and M. Lavagna [Phys. Rev. Lett. 95, 127203 (2005)] claimed that the transmission phase through a quantum fot, as measured via the Aharonov-Bohm interferometer, differs from the phase which determines the correspond
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon
Tunneling conductance through two quantum dots, which are connected in series to left and right leads, is calculated by using the numerical renormalization group method. As the hopping between the dots increases from very small value, the following s
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con
A correct general formula for the spin current through an interacting quantum dot coupled to ferromagnetic leads with magnetization at an arbitrary angle $theta$ is derived within the framework of the Keldysh formalism. Under asymmetric conditions, t