ﻻ يوجد ملخص باللغة العربية
A correct general formula for the spin current through an interacting quantum dot coupled to ferromagnetic leads with magnetization at an arbitrary angle $theta$ is derived within the framework of the Keldysh formalism. Under asymmetric conditions, the spin current component J_{z} may change sign for $0<theta<pi$. It is shown that the spin current and spin tunneling magnetoresistance exhibit different angle dependence in the free and Coulomb blockade regimes. In the latter case, the competition of spin precession and the spin-valve effect could lead to an anomaly in the angle dependence of the spin current.
Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes with non-collinear magnetic moments is analyzed theoretically in terms of the non-equilibrium Green function formalism. Electrons in the dot are assumed to be
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi
We study transport through a quantum dot side-coupled to two parallel Luttinger liquid leads in the presence of a Coulombic dot-lead interaction. This geometry enables an exact treatment of the inter-lead Coulomb interactions. We find that for dots s
Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantu
We consider a quantum dot coupled to both superconducting and spin-polarized electrodes, and study the triad interplay of the Kondo effect, superconductivity, and ferromagnetism, any pair of which compete with and suppress each other. We find that th