ﻻ يوجد ملخص باللغة العربية
Recently, A. Jerez, P. Vitushinsky and M. Lavagna [Phys. Rev. Lett. 95, 127203 (2005)] claimed that the transmission phase through a quantum fot, as measured via the Aharonov-Bohm interferometer, differs from the phase which determines the corresponding conductance. Here we show that this claim is wrong for the single level Anderson model, which is usually used to describe the quantum dot. So far, there exists no derivation of this claim from any explicit theoretical model.
We consider a Kondo spin that is coupled antiferromagnetically to a large chaotic quantum dot. Such a dot is described by the so-called universal Hamiltonian and its electrons are interacting via a ferromagnetic exchange interaction. We derive an eff
We report on the phase measurements on a quantum dot containing a single electron in the Kondo regime. Transport takes place through a single orbital state. Although the conductance is far from the unitary limit, we measure for the first time, a tran
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con
We review our recent studies on the Kondo effect in the tunneling phenomena through quantum dot systems. Numerical methods to calculate reliable tunneling conductance are developed. In the first place, a case in which electrons of odd number occupy t
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon