ﻻ يوجد ملخص باللغة العربية
Dispersal of species to find a more favorable habitat is important in population dynamics. Dispersal rates evolve in response to the relative success of different dispersal strategies. In a simplified deterministic treatment (J. Dockery, V. Hutson, K. Mischaikow, et al., J. Math. Bio. 37, 61 (1998)) of two species which differ only in their dispersal rates the slow species always dominates. We demonstrate that fluctuations can change this conclusion and can lead to dominance by the fast species or to coexistence, depending on parameters. We discuss two different effects of fluctuations, and show that our results are consistent with more complex treatments that find that selected dispersal rates are not monotonic with the cost of migration.
In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of
This study analyzed the morbidity and mortality rates of the COVID-19 pandemic in different prefectures of Japan. Under the constraint that daily maximum confirmed deaths and daily maximum cases should exceed 4 and 10, respectively, 14 prefectures we
Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work p
Traditional approaches to ecosystem modelling have relied on spatially homogeneous approximations to interaction, growth and death. More recently, spatial interaction and dispersal have also been considered. While these leads to certain changes in co
We introduce a model of traveling agents ({it e.g.} frugivorous animals) who feed on randomly located vegetation patches and disperse their seeds, thus modifying the spatial distribution of resources in the long term. It is assumed that the survival